
Joshua Heneage Dawes University of Manchester and CERN
joshua.dawes@cern.ch

Giles Reger University of Manchester
Giovanni Franzoni CERN

Andreas Pfeiffer CERN
Giacomo Govi Fermi National Accelerator Laboratory

VyPR2: A Framework for Runtime
Verification of Python Web Services

�1

mailto:joshua.dawes@cern.ch

!2

• A new temporal logic for specifying performance
requirements.

• Instrumentation and monitoring for this logic.

• An operational view of monitoring web services with this
new theory - the VyPR2 framework.

• The first major application of VyPR2 to critical
infrastructure on the CMS Experiment at CERN.

Outline

some parameter

tim
e

ta
ke

n
by

 fu
nc

tio
n • When did the execution time exceed some t?

• How often?

• For which inputs?

• On which branch in control-flow?

• Python? Language of choice for certain infrastructure on the
CMS Experiment.

• At CMS, performance analysis has historically been a manual
effort.

•

Towards Automated Performance
Analysis of Python

!3

• Code bases are gaining in complexity with new use cases
from detector experts.

• The Large Hadron Collider will soon generate far more
data after a period of upgrades.

• On CMS, we need a more sophisticated performance
analysis technique.

Standard profiling is nice, but…

!4

• “Lightweight formal method”

• Properties are normally about ordering
(Linear Temporal Logic - LTL)

• Sometimes with data involved (Quantified
Event Automata - QEA), sometimes with
time (Metric Temporal Logic - MTL).

• Usually (LTL, MTL) high-level, abstract.

Runtime Verification

!5

• Linear Temporal Logic, Metric Temporal Logic - very
abstract wrt code.

• no meaning on its own!

• Existing specification languages have shown to be
unintuitive to write/understand for engineers at CMS.

Why is “abstract” not ideal for us?

!6

• A low-level, linear-time temporal logic.

• CFTL property + program = immediate meaning.

• A logic for description of performance requirements.

Control-Flow Temporal Logic (CFTL)

!7

State 1 State 2 State 3 State 4

Transition

t1 t2 t3 t4

duration = t2 - t1

Transition

duration = t3 - t2

Transition

duration = t4 - t3

time

function calls, assignments,
etc

• We think of program runs as dynamic runs:

• Concrete States (instantaneous checkpoints with an associated timestamp) -

• Transitions (computation performed to reach one state from another) - pairs of states -

• From this, we can pick points of interest and require that some property holds at each one.

General Idea

!8

• “Every time func is called, the resulting state should leave
x with a value no more than 10”

• “If auth is changed to True, every future call to execute
should take no more than 0.5 seconds”

• “Whenever hashes is changed, the next call to
find_new_hashes should take no more than 0.3 seconds”

What kinds of properties?

!9

if n > 1:
 for i in range(n):
 r = f(i)
 print(r)
else:
 print("nope")

[]

['conditional']

['control-flow']
conditional

path length = None

['loop']

['loop']
<_ast.Call object at 0x104f90050>

path length = None

['print']

print stmt
[not(<_ast.Compare object at 0x104f8cd50>)]

path length = 1

['r', 'f']

['r', 'f']
[<_ast.Compare object at 0x104f8cd50>, 'for']

path length = 1

['post-loop']

['loop-skip']
not(<_ast.Call object at 0x104f90050>)

path length = None

['post-conditional']

['control-flow']
post-condition

path length = None
['print']

print stmt
[<_ast.Compare object at 0x104f8cd50>, 'for']

path length = 2

['control-flow']
post-condition

path length = None

['loop-jump']
loop-jump

path length = None

[None]
post-loop

path length = None

variables/functions in P

Symbolic Control-Flow Graphs (SCFGs)

!10

Dynamic Runs identify with paths through SCFGs.

Each concrete state in a Dynamic Run contains a
symbolic state.

This will help when we need to perform
instrumentation.

SCFGs to Dynamic Runs

!11

I will focus on singly-quantified formulas

is a predicate on concrete states/transitions in a dynamic run, eg:

A boolean combination of predicates on q and
surrounding concrete states/transitions.

Building CFTL Formulas

!12

points of interest selection propositional connectives

construction of predicates on states and transitions

Atoms in CFTL formulas are those terms generated by

Syntax

!13

• “Every time var changes, the next call to f takes less than
0.1 seconds”

A simple example

!14

Vertices in red are
candidate points of
interest and form a
set

The final instrumentation
points in blue are organised
into a tree

How do we instrument for CFTL?

!15

index of the
relevant candidate
point of interest

index of the
relevant atom

(1)Give each candidate point of interest an index.

(2)Give each atom an index.

(3)Attach to instruments each of these indices.

(4)Instantiate a monitor whenever a state changing var is observed.

Monitoring for CFTL

!16

In practice, this is very efficient.

(1)When an instrument fires at runtime, use its candidate
point of interest index to find all relevant monitors.

(2)Use the instrument’s atom index to find which part of the
monitor state to update.

Monitoring for CFTL

!17

• The first major application of VyPR2 was to a service used to
upload Conditions data for the CMS Experiment at CERN.

• Conditions data describe the alignment and calibrations of
the CMS detector.

• They are needed for a full reconstruction of data taken, ready
for physics analysis.

• VyPR2 helped us detect significant performance drops.

Our Setting

!18

(1)Web Services are deployed to Production Machines.

(2)After deployment, instrument based on a specification
configuration file written in VyPR2’s PyCFTL library.

(3)Monitor for the specification at runtime.

(4)Perform offline analysis using a central verdict server.

A Pipeline for Verification

!19

Forall(q = changes('val')).\
Check(lambda q : (
 q.next_call('func').duration()._in([0, 3])
))

PyCFTL

!20

Service-level Monitoring,
per function

Server with Relational
Verdict Database

For a given HTTP request, function and property combination, what were
the verdicts generated by monitoring a property across all calls?

For a given verdict and subsystem, which function/property pairs generated
the verdict?

For a given function call and verdict, which lines were part of bindings that
generated this verdict while monitoring some property?

A Verdict Server

!21

• These violations are from a property over code
that was supposed to be an optimisation.

• Collaboration with the CMS Alignment, Calibrations and Databases group.

• Recorded ~14,600 Conditions uploads over 6 months of LHC runs.

Results

!22

• VyPR2 is, to the best of our knowledge, the first application
of Runtime Verification in High Energy Physics.

• We also haven’t found any related work on web services.

• VyPR2 has helped to detect significant performance
drops in a service that is critical to the physics
reconstruction pipeline of the CMS Experiment.

• Next steps: explanation (paths taken, state present, etc) of
performance drops.

To conclude…

!23

• VyPR (without extension to web services) - http://cern.ch/vypr

• Feel free to contact me (joshua.dawes@cern.ch) if you have a
potential use for VyPR or its web service extension VyPR2.

Using VyPR

!24

http://cern.ch/vypr
mailto:joshua.dawes@cern.ch

