
Specification of Temporal Properties
of Functions for Runtime Verification
SAC-SVT 2019 - Limassol - Cyprus

Joshua Heneage Dawes1,2 Giles Reger1

1University of Manchester, Manchester, UK

2CERN, Geneva, Switzerland

Slide 1

Runtime Verification

Usually: given a run of a system τ and a property we want the
system to have φ check whether τ ∈ L(φ) e.g. whether the run is
in the language of/satisfies the property.

Pragmatically: instrument the system to produce τ , create a
monitor from φ to observe τ and decide (at runtime) τ ∈ L(φ)

In this work: given a program P and a property φ over constructs
in P, instrument P to generate a sufficiently informative run τ and
then check whether τ ∈ L(φ)

Slide 2

The RV Picture

Slide 3

Motivation 1

def process(value ,quick):

if not quick:

rebalance ()

if newValue(value):

balanceIns(value)

result = search(value)

logging.log(result)

update(value ,result)

return result

�

 quick →(
(¬proc U[0,5] out)
∧ ♦10 fin

)

quick ↔ call process
with quick = 1

proc ↔ (call rebalance) ∨
(call balanceIns)

out ↔ call logging.log
fin ↔ return process

Slide 4

Motivation 2

Slide 5

Motivation 2
https://en.wikipedia.org/wiki/Runtime_verification

Slide 6

https://en.wikipedia.org/wiki/Runtime_verification

The Separation and Locality Problems
RV approaches often separate instrumentation and specification

I The requirement for an instrumentation mapping can mean
that ϕ cannot be understood straight away, and its exact
meaning can even vary depending on the mapping.

I It also means that instrumentation cannot be used to optimise
monitoring and the specification cannot be used to optimise
instrumentation

RV approaches are often non-local, focussing on interfaces.

I Working with high level properties, rather than properties
closely related to P, can be unintuitive for engineers.

This work combines local specification with instrumentation.

Slide 7

This Talk

In this talk I will

I Introduce a useful/necessary program abstraction

I Introduce a new logic (CFTL) that addresses the above issues

I Introduce a simple monitoring algorithm for CFTL

I Show how we (minimally) instrument using the specification

I Describe some experimental results

Slide 8

A Language (subset of Python)

We consider simple programs of the form

Program := x = expr | Program; Program |
if expr then Program (else Program) |
while expr do Program | for expr in Program

expr := x | f (expr1, . . . , exprn) | arithExpr | boolExpr

No complex control-flow, no concurrency, an over-approximating
view of the heap.

Scope is a single function run (no nested calls, no recursion)

This looks like a subset of many languages, we use Python

Slide 9

Symbolic Control-Flow Graphs

A program point is a node in the AST of a program.

Let Sym be the set of symbols in a program P representing
variables and functions.

A symbolic state σ = 〈p,m〉 consists of a program point p and a
map m from Sym → {changed, called, undefined}

The Symbolic Control-Flow Graph of a program P is a directed
graph SCFG(P) = 〈V ,E , vs〉 where

I V is a finite set of symbolic states

I E is a set of edges between V (representing instructions)

I vs ∈ V is the starting state

Slide 10

Symbolic Control-Flow Graphs

1. a = 10

2. for i in range(n):

3. f(i)

4. a = 20

5. f(a)

6.

[]1 [a 7→ changed]2 [i 7→ changed]3

[f 7→ called]2[]4

[a 7→ changed]5 [f 7→ called]6

Slide 11

Constructing SCFG
We define a translation function recursively on the structure of
programs. Tσ,P gives the set of edges from symbolic state σ
given the program P.

For example, we translate an assignment as follows

T(σ, x = expr ; P) =
{〈σ, 〈p(P), [x 7→ changed]〉〉} ∪ T(〈p(P), [x 7→ changed]〉,P)

if fn(expr) = ∅, and
{〈σ, 〈p(P), [xi 7→ changed, fi 7→ called]〉〉}

∪ T(〈p(P), [xi 7→ changed, fi 7→ called]〉,P)
for xi ∈ VarR and fi ∈ fn(expr) otherwise

Slide 12

A Notion of Traces: Dynamic Runs
We define dynamic runs over SCFG(P) = 〈V ,E , vs〉

A concrete state 〈t, σ, τ〉 consists of a timestamp t ∈ R≥, a
symbolic state σ ∈ V , and a valuation τ from Sym to values.

A dynamic run D is a finite sequence of concrete states with
strictly increasing timestamps

A transition 〈〈t, σ, τ〉, 〈t ′, σ′, τ ′〉〉 is a pair of adjacent concrete
states in D, it is well-formed if there is path in SCFG between σ
and σ′, and it is atomic if 〈σ, σ′〉 ∈ E

A dynamic run is well-formed if every transition is well-formed

A dynamic run is most-general if every transition is atomic.

Slide 13

Our Example

1. a = 10

2. for i in range(n):

3. f(i)

4. a = 20

5. f(a)

6.

[]1 [a 7→ changed]2 [i 7→ changed]3

[f 7→ called]2[]4

[a 7→ changed]5 [f 7→ called]6

Deterministic, so family of dynamic runs differing in timestamps
(for a given n)

Slide 14

Our Example

〈0, []1, []〉
〈0.1, [a 7→ changed]2, [a 7→ 10]〉
〈0.2, [i 7→ changed]3, [a 7→ 10, i 7→ 0]〉
〈0.8, [f 7→ called]2, [a 7→ 10, i 7→ 0]〉
〈0.9, [i 7→ changed]3, [a 7→ 10, i 7→ 1]〉
〈2.1, [f 7→ called]2, [a 7→ 10, i 7→ 1]〉
〈2.2, []4, [a 7→ 10]〉
〈2.3, [a 7→ changed]5, [a 7→ 20]〉
〈3.4, [f 7→ called]6, [a 7→ 20]〉

[]1 [a 7→ changed]2 [i 7→ changed]3

[f 7→ called]2[]4

[a 7→ changed]5 [f 7→ called]6

Slide 15

Control-Flow Temporal Logic
“The calls to function f take less than 5 time units”

∀T t ∈ calls(f) : duration(t) ∈ (0, 5).

“Whenever x changes, its value remains unchanged until the next
call of f ”, i.e. f always sees every change to x

∀Sq ∈ changes(x) : q(x) = source(nextT (q, calls(f)))(x).

“Whenever x changes, if its value is in [0, 5), then all future calls
to f should take units of time in (0, 10)”

∀Sq ∈ changes(x) : ∀T t ∈ futureT (q, calls(f)) :

(q(x) ∈ (0, 5) ∨ q(x) ∈ [0, 1]) =⇒ duration(t) ∈ (0, 10).

Slide 16

Control-Flow Temporal Logic
“The calls to function f take less than 5 time units”

∀T t ∈ calls(f) : duration(t) ∈ (0, 5).

“Whenever x changes, its value remains unchanged until the next
call of f ”, i.e. f always sees every change to x

∀Sq ∈ changes(x) : q(x) = source(nextT (q, calls(f)))(x).

“Whenever x changes, if its value is in [0, 5), then all future calls
to f should take units of time in (0, 10)”

∀Sq ∈ changes(x) : ∀T t ∈ futureT (q, calls(f)) :

(q(x) ∈ (0, 5) ∨ q(x) ∈ [0, 1]) =⇒ duration(t) ∈ (0, 10).

Slide 16

Control-Flow Temporal Logic
“The calls to function f take less than 5 time units”

∀T t ∈ calls(f) : duration(t) ∈ (0, 5).

“Whenever x changes, its value remains unchanged until the next
call of f ”, i.e. f always sees every change to x

∀Sq ∈ changes(x) : q(x) = source(nextT (q, calls(f)))(x).

“Whenever x changes, if its value is in [0, 5), then all future calls
to f should take units of time in (0, 10)”

∀Sq ∈ changes(x) : ∀T t ∈ futureT (q, calls(f)) :

(q(x) ∈ (0, 5) ∨ q(x) ∈ [0, 1]) =⇒ duration(t) ∈ (0, 10).

Slide 16

Control-Flow Temporal Logic
“The calls to function f take less than 5 time units”

∀T t ∈ calls(f) : duration(t) ∈ (0, 5).

“Whenever x changes, its value remains unchanged until the next
call of f ”, i.e. f always sees every change to x

∀Sq ∈ changes(x) : q(x) = source(nextT (q, calls(f)))(x).

“Whenever x changes, if its value is in [0, 5), then all future calls
to f should take units of time in (0, 10)”

∀Sq ∈ changes(x) : ∀T t ∈ futureT (q, calls(f)) :

(q(x) ∈ (0, 5) ∨ q(x) ∈ [0, 1]) =⇒ duration(t) ∈ (0, 10).

Slide 16

Our Example

1. a = 10

2. for i in range(n):

3. f(i)

4. a = 20

5. f(a)

6.

[]1 [a 7→ changed]2 [i 7→ changed]3

[f 7→ called]2[]4

[a 7→ changed]5 [f 7→ called]6

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

Slide 17

Syntax

φ := ∀Sq ∈ ΓS : φ | ∀T t ∈ ΓT : φ | φ ∨ φ | ¬φ | φS | φT | true
φS := S(x) = v | S(x) = S(x) | S(x) ∈ (n,m) | S(x) ∈ [n,m]
φT := duration(T) ∈ (n,m) | duration(T) ∈ [n,m]

ΓS := changes(x) | futureS(q, changes(x)) | futureS(t, changes(x))
ΓT := calls(f) | futureT (q, calls(f)) | futureT (t, calls(f))

S := q | source(T) | dest(T) | nextS(S , changes(x)) |
nextS(T , changes(x))

T := t | incident(S) | nextT (S , calls(f)) | nextT (T , calls(f))

Well-formed if well-sorted, in prenex form, and all variables bound
exactly once.

Slide 18

Syntax

φ := ∀Sq ∈ ΓS : φ | ∀T t ∈ ΓT : φ | φ ∨ φ | ¬φ | φS | φT | true
φS := S(x) = v | S(x) = S(x) | S(x) ∈ (n,m) | S(x) ∈ [n,m]
φT := duration(T) ∈ (n,m) | duration(T) ∈ [n,m]

ΓS := changes(x) | futureS(q, changes(x)) | futureS(t, changes(x))
ΓT := calls(f) | futureT (q, calls(f)) | futureT (t, calls(f))

S := q | source(T) | dest(T) | nextS(S , changes(x)) |
nextS(T , changes(x))

T := t | incident(S) | nextT (S , calls(f)) | nextT (T , calls(f))

Well-formed if well-sorted, in prenex form, and all variables bound
exactly once.

Slide 18

Syntax

φ := ∀Sq ∈ ΓS : φ | ∀T t ∈ ΓT : φ | φ ∨ φ | ¬φ | φS | φT | true
φS := S(x) = v | S(x) = S(x) | S(x) ∈ (n,m) | S(x) ∈ [n,m]
φT := duration(T) ∈ (n,m) | duration(T) ∈ [n,m]

ΓS := changes(x) | futureS(q, changes(x)) | futureS(t, changes(x))
ΓT := calls(f) | futureT (q, calls(f)) | futureT (t, calls(f))

S := q | source(T) | dest(T) | nextS(S , changes(x)) |
nextS(T , changes(x))

T := t | incident(S) | nextT (S , calls(f)) | nextT (T , calls(f))

Well-formed if well-sorted, in prenex form, and all variables bound
exactly once.

Slide 18

Idea behind Semantics

Formulas define points of interest in the program, which are
related to symbolic states in the SCFG, which then relate to some
concrete states in a dynamic run.

We quantify over these to produce a set of bindings

The quantifier-free formula is then evaluated for each binding
where we use the points of interest to interpret temporal formulas

Slide 19

Points of Interest
A state q (or transition tr) in a dynamic run D satisfies point of
interest Γ if D, q ` Γ (or D, tr ` Γ)

D, 〈t, σ, τ〉 ` changes(x) iff σ(x) = changed
D, q ` futureS(s, changes(x)) iff

t(q) > t(s) and D, q ` changes(x)
D, tr ` calls(f) iff

for every path π ∈ paths(tr) there is:
some 〈σ1, σ2〉 ∈ π
such that σ2(f) = called

D, tr ` futureT (s, calls(f)) iff
t(tr) > t(s) and D, tr ` calls(f)

Note D may not be most general e.g. transitions in D may relate
to sets of paths in SCFG

Slide 20

Points of Interest
A state q (or transition tr) in a dynamic run D satisfies point of
interest Γ if D, q ` Γ (or D, tr ` Γ)

D, 〈t, σ, τ〉 ` changes(x) iff σ(x) = changed
D, q ` futureS(s, changes(x)) iff

t(q) > t(s) and D, q ` changes(x)
D, tr ` calls(f) iff

for every path π ∈ paths(tr) there is:
some 〈σ1, σ2〉 ∈ π
such that σ2(f) = called

D, tr ` futureT (s, calls(f)) iff
t(tr) > t(s) and D, tr ` calls(f)

Note D may not be most general e.g. transitions in D may relate
to sets of paths in SCFG

Slide 21

Quantification Domains

The quantification domain of a quantified state or transition is
simply the states or transitions that satisfy the point of interest.

In ∀Sq ∈ ΓS the variable q ranges over the states c such that
c ` ΓS . Similarly in ∀T ∈ ΓT .

We overload ΓS (and ΓT) to also stand for this set.

This could be computed by iterating over D and checking ` Γ for
each state (or transition).

Slide 22

Semantics

D, β |= ∀Sq ∈ ΓS : φ iff for all c ∈ ΓS we have D, β[q 7→ c] |= φ
D, β |= ∀T tr ∈ ΓT : φ iff for all c ∈ ΓT we have D, β[tr 7→ c] |= φ
D, β |= true
D, β |= φ1 ∨ φ2 iff D, β |= φ1 or D, β |= φ2
D, β |= ¬φ iff not D, β |= φ
D, β |= S(x) = v iff eval(D, β, S)(x) = v
D, β |= S1(x1) = S2(x2) iff eval(D, β, S1)(x1) = eval(D, β, S2)(x2)
D, β |= S(x) ∈ [n,m] iff eval(D, β, S)(x) ∈ [n,m]
D, β |= S(x) ∈ (n,m) iff eval(D, β, S)(x) ∈ (n,m)
D, β |= duration(T) ∈ (n,m) iff duration(eval(D, β,T)) ∈ (n,m)
D, β |= duration(T) ∈ [n,m] iff duration(eval(D, β,T)) ∈ [n,m]

Where we evaluate quantifier-free formulas on the dynamic run
with respect to a given binding.

Slide 23

Semantics

D, β |= ∀Sq ∈ ΓS : φ iff for all c ∈ ΓS we have D, β[q 7→ c] |= φ
D, β |= ∀T tr ∈ ΓT : φ iff for all c ∈ ΓT we have D, β[tr 7→ c] |= φ
D, β |= true
D, β |= φ1 ∨ φ2 iff D, β |= φ1 or D, β |= φ2
D, β |= ¬φ iff not D, β |= φ
D, β |= S(x) = v iff eval(D, β, S)(x) = v
D, β |= S1(x1) = S2(x2) iff eval(D, β, S1)(x1) = eval(D, β, S2)(x2)
D, β |= S(x) ∈ [n,m] iff eval(D, β, S)(x) ∈ [n,m]
D, β |= S(x) ∈ (n,m) iff eval(D, β, S)(x) ∈ (n,m)
D, β |= duration(T) ∈ (n,m) iff duration(eval(D, β,T)) ∈ (n,m)
D, β |= duration(T) ∈ [n,m] iff duration(eval(D, β,T)) ∈ [n,m]

Where we evaluate quantifier-free formulas on the dynamic run
with respect to a given binding.

Slide 23

Evaluating Non-Temporal Formulas

Evaluating non-temporal formulas relatively straightforward given
some functions operating on states and transitions e.g.
source(〈q1, q2〉) = q1.

eval(D, β, q) = β(q)
eval(D, β, tr) = β(tr)
eval(D, β, source(T)) = source(eval(D, β,T))
eval(D, β, dest(T)) = dest(eval(D, β,T))
eval(D, β, incident(S)) = incident(D, eval(D, β, S))

Slide 24

Evaluating Temporal Formulas

For temporal formulas it is necessary to identify the future point of
interest.

eval

(
D, β,
nextS(X , changes(x))

)
= q such that:

t(q) > t(eval(D, β,X)) and D, q ` changes(x) and there is no
q′ with t(eval(D, β,X)) < t(q′) < t(q) and D, q′ ` changes(x)

eval

(
D, β,
nextT (X , calls(f))

)
= tr such that:

t(tr) > t(eval(D, β,X)) and D, tr ` calls(f) and there is no
tr ′ with t(eval(D, β,X)) < t(tr ′) < t(tr) and D, tr ′ ` calls(f)

Slide 25

Satisfaction/Violation

Finally, a dynamic run D satisfies a (well-formed, well-defined)
CFTL formula φ if D, [] |= φ, otherwise D violates φ.

Slide 26

Our Example

1. a = 10

2. for i in range(n):

3. f(i)

4. a = 20

5. f(a)

6.

[]1 [a 7→ changed]2 [i 7→ changed]3

[f 7→ called]2[]4

[a 7→ changed]5 [f 7→ called]6

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

Slide 27

Our Example

〈0, []1, []〉
〈0.1, [a 7→ changed]2, [a 7→ 10]〉 ∈ changes(a)
〈0.2, [i 7→ changed]3, [a 7→ 10, i 7→ 0]〉
〈0.8, [f 7→ called]2, [a 7→ 10, i 7→ 0]〉 ∈ calls(f)
〈0.9, [i 7→ changed]3, [a 7→ 10, i 7→ 1]〉
〈2.1, [f 7→ called]2, [a 7→ 10, i 7→ 1]〉 ∈ calls(f)
〈2.2, []4, [a 7→ 10]〉
〈2.3, [a 7→ changed]5, [a 7→ 20]〉 ∈ changes(a)
〈3.4, [f 7→ called]6, [a 7→ 20]〉 ∈ calls(f)

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

Slide 28

Our Example

〈0, []1, []〉
〈0.1, [a 7→ changed]2, [a 7→ 10]〉 ∈ changes(a)
〈0.2, [i 7→ changed]3, [a 7→ 10, i 7→ 0]〉
〈0.8, [f 7→ called]2, [a 7→ 10, i 7→ 0]〉 ∈ calls(f)
〈0.9, [i 7→ changed]3, [a 7→ 10, i 7→ 1]〉
〈2.1, [f 7→ called]2, [a 7→ 10, i 7→ 1]〉 ∈ calls(f)
〈2.2, []4, [a 7→ 10]〉
〈2.3, [a 7→ changed]5, [a 7→ 20]〉 ∈ changes(a)
〈3.4, [f 7→ called]6, [a 7→ 20]〉 ∈ calls(f)

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

Slide 28

Our Example

〈0, []1, []〉
〈0.1, [a 7→ changed]2, [a 7→ 10]〉 ∈ changes(a)
〈0.2, [i 7→ changed]3, [a 7→ 10, i 7→ 0]〉
〈0.8, [f 7→ called]2, [a 7→ 10, i 7→ 0]〉 ∈ calls(f)
〈0.9, [i 7→ changed]3, [a 7→ 10, i 7→ 1]〉
〈2.1, [f 7→ called]2, [a 7→ 10, i 7→ 1]〉 ∈ calls(f)
〈2.2, []4, [a 7→ 10]〉
〈2.3, [a 7→ changed]5, [a 7→ 20]〉 ∈ changes(a)
〈3.4, [f 7→ called]6, [a 7→ 20]〉 ∈ calls(f)

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

Slide 28

Our Example

〈0, []1, []〉
〈0.1, [a 7→ changed]2, [a 7→ 10]〉 ∈ changes(a)
〈0.2, [i 7→ changed]3, [a 7→ 10, i 7→ 0]〉
〈0.8, [f 7→ called]2, [a 7→ 10, i 7→ 0]〉 ∈ calls(f)
〈0.9, [i 7→ changed]3, [a 7→ 10, i 7→ 1]〉
〈2.1, [f 7→ called]2, [a 7→ 10, i 7→ 1]〉 ∈ calls(f)
〈2.2, []4, [a 7→ 10]〉
〈2.3, [a 7→ changed]5, [a 7→ 20]〉 ∈ changes(a)
〈3.4, [f 7→ called]6, [a 7→ 20]〉 ∈ calls(f)

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

Slide 28

Our Example

〈0, []1, []〉
〈0.1, [a 7→ changed]2, [a 7→ 10]〉 ∈ changes(a)
〈0.2, [i 7→ changed]3, [a 7→ 10, i 7→ 0]〉
〈0.8, [f 7→ called]2, [a 7→ 10, i 7→ 0]〉 ∈ calls(f)
〈0.9, [i 7→ changed]3, [a 7→ 10, i 7→ 1]〉
〈2.1, [f 7→ called]2, [a 7→ 10, i 7→ 1]〉 ∈ calls(f)
〈2.2, []4, [a 7→ 10]〉
〈2.3, [a 7→ changed]5, [a 7→ 20]〉 ∈ changes(a)
〈3.4, [f 7→ called]6, [a 7→ 20]〉 ∈ calls(f)

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

Slide 28

A Naive Monitoring Algorithm

Maintain a map M from bindings to formula trees

For each concrete state qi in D

Update bindings:

1. If qi or (qi−1, qi) are in Γ1 then create a new binding

2. If there is a binding β that can be extended by q for a
quantification domain Γi then extend it

Update the formula trees for each binding using q (most will not
be updated)

Slide 29

Formula Trees

Simply And-Or trees holding the quantifier-free formulas that can
be updated with concrete states to evaluate sub-formulas.

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

ϕ

¬(q(a) ∈ [0, 20]) nextT (q, calls(f))) ∈ [0, 1]

Slide 30

Formula Trees

Simply And-Or trees holding the quantifier-free formulas that can
be updated with concrete states to evaluate sub-formulas.

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

ϕ

False nextT (q, calls(f))) ∈ [0, 1]

Slide 30

Formula Trees

Simply And-Or trees holding the quantifier-free formulas that can
be updated with concrete states to evaluate sub-formulas.

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

ϕ

nextT (q, calls(f))) ∈ [0, 1]

Slide 31

Formula Trees

Simply And-Or trees holding the quantifier-free formulas that can
be updated with concrete states to evaluate sub-formulas.

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

ϕ

True

Slide 31

Formula Trees

Simply And-Or trees holding the quantifier-free formulas that can
be updated with concrete states to evaluate sub-formulas.

∀Sq ∈ changes(a) :

q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

True

Slide 32

Instrumentation Problem

Need to pick points in the program to add instruments to produce
the dynamic run

Could pick all points but this will be inefficient

Use the specification to decide where to instrument

Two phases

1. Identify the symbolic support of a quantification domain as
the set of symbolic states that could produce a binding

2. Use the quantifier-free formula to find all necessary symbolic
states forward reachable from the symbolic support

Slide 33

Minimal Instrumentation

Importantly, if we just consider these instrumentation points then
we preserve verdicts.

Theorem
For SCFG(P), if D satisfies φ then the dynamic run produced by
removing all states from D (by collapsing transitions) not identified
as instrumentation points also satisfies φ.

Instrumentation is minimal with respect to reachability - but not
necessarily with respect to other things e.g. dataflow

Slide 36

Optimisations
Generation Points
Now that we statically know when bindings can be created we can
do a path-analysis to find all points where bindings are necessarily
going to be extended and remove this iteration from the naive
monitoring algorithm.

In other words, all binding-generation points can be identified
completely statically.

Instrumentation for Indexing
We can also statically determine which bindings will be updated
where, allowing us to store this information and use it to directly
index the relevant formula trees. More information in TACAS tool
paper.

Slide 37

The VyPR tool

Takes a Python program and a property specification file (written
with our own specification-building library) and

1. Builds the SCFG

2. Identifies and adds relevant instrumentation points

3. Runs monitoring asynchronously

4. Outputs a verdict report once the program terminates

Slide 38

Experiments with VyPR

Monitor two properties on a sample (representative) program

∀Sq ∈ changes(a) :

q(a) ∈ [0, 80] =⇒ duration(nextT (q, calls(f))) ∈ [0, 1]

∀Sq ∈ changes(a) : ∀T t ∈ future(q, calls(f)) :

q(a) ∈ [0, 80] =⇒ duration(t) ∈ [0, 1]

Questions

1. How much overhead does VyPR introduce?

2. How much does this depend on time between observations?

Slide 39

Results

50
1

60
1

70
1

80
1

90
1

10
01

11
01

12
01

13
01

14
01

Bindings generated at runtime

0.0

0.2

0.4

0.6

0.8

O
v
e
rh

e
a
d
 a

s
%

 e
x
tr

a

17
63

38

24
15

88

31
68

38

40
20

88

49
73

38

Bindings generated at runtime

0

1

2

3

4

5

O
v
e
rh

e
a
d
 a

s
%

 e
x
tr

a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
Delay (ms)

0

20

40

60

80

Ov
er

he
ad

 a
s %

 e
xt

ra

Average % overhead vs delay (ms)

Slide 40

Summary

New runtime verification framework for real-time temporal
properties of Python functions

VyPR has now been extended to web services.

I The extension, along with its first major application to
infrastructure at the CMS Experiment at CERN, is currently
being presented at TACAS.

Future work

I Transformations on SCFG (and program) to reduce
instrumentation

I Symbolic execution to reduce instrumentation

I Violation explanation

Slide 41

