Specification of Temporal Properties
of Functions for Runtime Verification

SAC-SVT 2019 - Limassol - Cyprus

1,2

Joshua Heneage Dawes™ Giles Reger!

LUniversity of Manchester, Manchester, UK

2CERN, Geneva, Switzerland

Runtime Verification

Usually: given a run of a system 7 and a property we want the
system to have ¢ check whether 7 € L(¢) e.g. whether the run is
in the language of/satisfies the property.

Pragmatically: instrument the system to produce 7, create a
monitor from ¢ to observe 7 and decide (at runtime) 7 € L(¢)

In this work: given a program P and a property ¢ over constructs
in P, instrument P to generate a sufficiently informative run 7 and
then check whether 7 € L(¢)

Slide 2

The RV Picture

el
=
[e]
°
0]
=
—
<

verdict
monitor —

observe feedback

instrumentation

system

/RW MANCHESTER
24

‘The University of Manchester

Motivation 1

def process(value,quick):

if not quick:
rebalance ()

if newValue(value):
balanceIns (value)

result = search(value)

logging.log(result)

update (value ,result)

return result

quick —

< (—proc Upp 5] out) >

A O1o fin

O
quick <+
proc <+
out —
fin >

call process

with quick =1
(call rebalance) V
(call balancelIns)
call logging.log
return process

Slide 4

Motivation 2

Monitor D Reaction Trace
Tool . £ H
explicit <. 3|el.| 2 5. g
N - H H Zlw
5 . z §| decision procedure 2lg EHEIE NEHEEEE
= time 8|3 5/Zle €218 2 |2|%|8|52]8(8
£ Togical [physical| £ | & HHHEIEHREAR R IEEE
Acrial |none| p | s | tot | N _|all| d |dynamic i | i |on|none| c [ouffnone one[so| e [et|p i
ARTi] s s tot NR |all| d i|i |on|none| c |ouf§ none [one|so| e |et| i i
c| s | tot | none |f [all| stream i|don| all |c |oufl sw [Mone[so|e [et|p|p|i
DANA |none| p | s | tot | R Jall|o i|don|sync|c |2 ? [Mone[so|e [et|p|p|f
detectEr [none| s | v | par | none | f | d |dynamic e | i|on| all |c |in| sw [fone[so| e |et|p|p |1
E-ACSL |ms |na| r | ? | na |na|o| coderewritingwith | e |d |on|sync|c |inlf sw fe |e|s |na|na|na|na
assertions
TavaMOP|none| s | w | tot | none |all|all| trace slicing © | d[on|sync| c |mfswATffr e elet|p|p|f
plugin-based
jURtRV [none| s | v | tot | none | f |d| automatabased | e |d |on|sync|c |infswR? |? e|et|p|p|f
(modulo theories eg.
SMT solver)
Larva |none| s | v tot N | f|o| automata-based |e |d|on| all |c |allf sw it [so|e|et|p|p|f
LogFire [none| s | w | tot | none |all| 0| rewritingbased | i | d |all|sync | c |ouff none [fone[so | e [et|p |p | f
(RETE)
MarQ/ |none| s | v | tot | N |f|o| automatabased | i |d |all|sync|c |allj sw [Mone[so| e |et|p|p|f
QEA
MonPoly [none| s | s | tot | N |[all|d | first-order queries | i | i |on|none | c |oufl none [fone|so| e [et|p | p [all
Mufin |none| s | v | tot | none | f |o| automatabased | i |d |on|sync|c |oull none flone[so| e [et|p |p | f
(union-find)
R2U2 |none| p | s | tot | N |[all|d| automatabased | e | i |on|async| c |oull none lone[so| e [et|p | p | i
RITHM |none| p | s | tot | none | f |o| time-triggered | e | d |on|async| ¢ |inf| sw [None[so|s |all[p |p |1
runtime verification
RTC |ms |na| w 7 na |na| o 7 i|d|on|sync|c il sw it [?|?|et|p|p|na
RV- |none| s | w | tot N [all[all] (see JavaMOP) i|d|all|sync|c|alf sw fr |e|elet|p|p|f
Monitor
STePr |none[s | s | tot | N |[all|o ? i[don| ? |c |oufinonefone[so e [et|p|p|?
TemPsy/ [none| p | v | tot | N |all|d| OCLconstraint | i|i |off| na | c |ouffnone [fone[so|e [et|p|p|f
OCLR-
Check
VALOUR|none| s | v | tot | N |all| o| automatabased | 1i|d |on| all | c | inlswAJ|fone|all| e |all| p | p | £

‘The University of Manchester

Motivation 2

https://en.wikipedia.org/wiki/Runtime_verification

HasNext [edit]

The Java Iterator ® interface requires that the hasNext () method be called and return true before the next() method
is called. If this does not acour, it is very possible that a user will iterate "off the end of* a Collection . The figure to the right
shows a finite state machine that defines a possible monitor for checking and enforcing this property with runtime

verification. From the unknown state, it is always an error to call the next () method because such an operation could be

unsafe. If hasNext() is called and retums true, it is safe to call next() , so the monitor enters the more state. If, 2 =
however, the hasNext () method returs false, there are no more elements, and the monitor enters the none state. In the é; z
more and none states, calling the hasNext () method provides no new information. It is safe to call the next() method 2 3
from the more state, but it becomes unknown if more elements exist, so the monitor reenters the initial unknown state.
Finally, calling the next () method from the none state results in entering the error state. What follows is a representation
of this property using parametric past time linear temporal logic.
V Iterator ¢ i.mext() — © (i.hasNext() == true)

The HasNext Property &

This formula says that any call to the next.() method must be immediately preceded by a call to hasNext () method
that returns true. The property here is parametric in the Iterator i . Conceptually, this means that there will be one copy of
the monitor for each possible lterator in a test program, although runtime verification systems need not implement their parametric monitors this way. The monitor for this property would
be set to trigger a handler when the formula is violated (equivalently when the finite state machine enters the error state), which will occur when either next () is called without first
calling hasNext() , orwhen hasNext () is called before next () , but returned faise.

UnsafeEnum [edit]

The Vector class in Java has two means for terating over its elements. One may use the lterator interface, as seeninthe | vector<string> v = new
previous example, or one may use the Enumeration interface. Besides the addition of a remove method for the Iterator v.add("hello”

interface, the main difference is that lterator is "fail fast" while Enumeration is not. What this means s that if one modifies :::: :g; i:

the Vector (other than by using the terator remove method) when one is iterating over the Vector using an lterator, a Enumeration<String> e = v.elements
ConcurrentModificationExceplion2 is thrown. However, when using an Enumeration this is not a case, as mentioned. This 6o oo

" b 0 . it { B
can result in non-deterministic results from a program because the Vector is left in an inconsistent state from the perspective ¥+ 2dd("bad
while(e.hasMoreElements
s = e.nextElement

Etimmnrmtinnn men mab simad s tanis sndnsh i Vinstas i madifind Tha tallmuinn rmmatin camine anttam ann he and p———

of the Enumeration. For legacy programs that stilluse the Enumeration interface, one may wish to enforce that

MANCHESTER
1824

Slide 6

‘The University of Manchester

https://en.wikipedia.org/wiki/Runtime_verification

The Separation and Locality Problems

RV approaches often separate instrumentation and specification

» The requirement for an instrumentation mapping can mean
that ¢ cannot be understood straight away, and its exact
meaning can even vary depending on the mapping.

» |t also means that instrumentation cannot be used to optimise
monitoring and the specification cannot be used to optimise
instrumentation

RV approaches are often non-local, focussing on interfaces.

» Working with high level properties, rather than properties
closely related to P, can be unintuitive for engineers.

This work combines local specification with instrumentation.

Slide 7

This Talk

In this talk | will
» Introduce a useful /necessary program abstraction
» Introduce a new logic (CFTL) that addresses the above issues
» Introduce a simple monitoring algorithm for CFTL
» Show how we (minimally) instrument using the specification

» Describe some experimental results

Slide 8

A Language (subset of Python)

We consider simple programs of the form

Program := x = expr | Program; Program |

if expr then Program (else Program) |

while expr do Program | for expr in Program
expr = x| f(expry,...,expr,) | arithExpr | boolExpr

No complex control-flow, no concurrency, an over-approximating
view of the heap.
Scope is a single function run (no nested calls, no recursion)

This looks like a subset of many languages, we use Python

Slide 9

Symbolic Control-Flow Graphs

A program point is a node in the AST of a program.

Let Sym be the set of symbols in a program P representing
variables and functions.

A symbolic state o = (p, m) consists of a program point p and a
map m from Sym — {changed, called, undefined}

The Symbolic Control-Flow Graph of a program P is a directed
graph SCFG(P) = (V, E, vs) where
» V is a finite set of symbolic states
» E is a set of edges between V (representing instructions)
» vs € V is the starting state

IANCHESTER R 3
1824 Slide 10

Symbolic Control-Flow Graphs

- []1 _— [a — changed]2 — [/ — Changed]3

1. a = 10

2. for i in range(n):

3. f(i)

4. a = 20 [[a «<— [f — called]>
5. f(a)

6.

[a — changed]s —— [f — called]s

Slide 11

Constructing SCFG

We define a translation function recursively on the structure of
programs. To, P gives the set of edges from symbolic state ¢
given the program P.

For example, we translate an assignment as follows

T(o,x = expr; P) =
{{o, (p(P), [x — changed]))} U T({(p(P), [x — changed]), P)
if fn(expr) =0, and
{{o, (p(P), [x; — changed, f; — called]))}
U T((p(P), [xi — changed, f; — called]), P)
for x; € VarR and f; € fn(expr) otherwise

CE/RW MANCHESTER
\\ 1824
SZA

Slide 12
ity of Manch

A Notion of Traces: Dynamic Runs
We define dynamic runs over SCFG(P) = (V, E, vs)

A concrete state (t, o, T) consists of a timestamp t € RZ, a
symbolic state o € V, and a valuation 7 from Sym to values.

A dynamic run D is a finite sequence of concrete states with
strictly increasing timestamps

A transition ((t,o,7),(t',0o’,7')) is a pair of adjacent concrete
states in D, it is well-formed if there is path in SCFG between o
and o', and it is atomic if (0,0’) € E

A dynamic run is well-formed if every transition is well-formed

A dynamic run is most-general if every transition is atomic.

Slide 13

Our Example

— [J1 — [a — changed], — [i — changed]s

a = 10
for i in range(n):

e s < [f — called],

f(a) l

[a — changed]s —— [f — called]s

OO WN

Deterministic, so family of dynamic runs differing in timestamps
(for a given n)

Slide 14

Our Example

— [J1 — [a — changed], — [i — changed]s

|)

[[a «<— [f — called],

|

0, []1, []> [a — changed]5 —_— [f — called]6

{
(0.1, [a — changed|2, [a — 10])

(0.2, [i + changed]s, [a — 10,/ — 0])
(0.8, [f + called]2, [a +— 10,7 +— 0])
(0.9, [i — changed]s, [a — 10,/ — 1])
(2.1,[f ~ called], [a — 10,/ — 1])
(2.2, [Ja,[a > 10]

(2.3,[a + changed]s, [a — 20])
(3.4,[f — called]e, [a — 20])

CE/RW MANCHESTER S
\ 1824 Slide 15

Control-Flow Temporal Logic

“The calls to function f take less than 5 time units”

VTt € calls(f) : duration(t) € (0, 5).

“Whenever x changes, its value remains unchanged until the next
call of f", i.e. f always sees every change to x

V°q € changes(x) : g(x) = source(next (g, calls(£)))(x).

“Whenever x changes, if its value is in [0,5), then all future calls
to f should take units of time in (0, 10)"

V°q € changes(x) : V't € futurer(q,calls(f)) :
(g(x) € (0,5) V q(x) € [0,1]) = duration(t) € (0, 10).

Slide 16

Control-Flow Temporal Logic

“The calls to function f take less than 5 time units”

VTt € calls(f) : duration(t) € (0, 5).

“Whenever x changes, its value remains unchanged until the next
call of f", i.e. f always sees every change to x

V°q € changes(x) : g(x) = source(next (g, calls(£)))(x).

“Whenever x changes, if its value is in [0,5), then all future calls
to f should take units of time in (0, 10)"

V°q € changes(x) : V't € futurer(q,calls(f)) :
(g(x) € (0,5) V q(x) € [0,1]) = duration(t) € (0, 10).

Slide 16

Control-Flow Temporal Logic

“The calls to function f take less than 5 time units”

VTt € calls(f) : duration(t) € (0, 5).

“Whenever x changes, its value remains unchanged until the next
call of f", i.e. f always sees every change to x

V°q € changes(x) : g(x) = source(next (g, calls(£)))(x).

“Whenever x changes, if its value is in [0,5), then all future calls
to f should take units of time in (0, 10)"

V°q € changes(x) : V't € futurer(q,calls(f)) :
(g(x) € (0,5) V q(x) € [0,1]) = duration(t) € (0, 10).

Slide 16

Control-Flow Temporal Logic

“The calls to function f take less than 5 time units”

VTt € calls(f) : duration(t) € (0, 5).

“Whenever x changes, its value remains unchanged until the next
call of f", i.e. f always sees every change to x

V°q € changes(x) : g(x) = source(next (g, calls(£)))(x).

“Whenever x changes, if its value is in [0,5), then all future calls
to f should take units of time in (0, 10)"

V°q € changes(x) : V't € futurer(q, calls(f)) :
(g(x) € (0,5) V q(x) € [0,1]) = duration(t) € (0, 10).

Slide 16

Our Example

— [J1 — [a — changed], — [/ > changed]s

. a =10
. for i in range(n):

afiiio [la «——— [f + called]>

f(a) l

[a — changed]s —— [f — called]s

o U WN

V°q € changes(a) :
q(a) € [0,20] = duration(nextr(q,calls(f))) € [0, 1]

Slide 17

Syntax

¢ = VqeTs:¢|Vtelr:¢|dVo|—0|ds|oT | true
¢s = S(x)=v]|S(x)=S5(x)]|S(x) e (nm)|S(x)e [n m]
¢1 = duration(T) € (n,m) | duration(T) € [n, m|
s := changes(x) | futures(q,changes(x)) | futures(t, changes(x))
M+ := calls(f) | futurer(q,calls(f)) | futurer(t,calls(f))
S = gq|source(T) |dest(T) | nexts(S, changes(x)) |
nexts(T, changes(x))
T = t]incident(S) | nextt(S,calls(f)) | nextr(T,calls(f))

Well-formed if well-sorted, in prenex form, and all variables bound
exactly once.

CE/RW MANCHESTER A
\ 1824 Slide 18
SZA

ity of Manch

¢ = VqeTs:¢p|VTtelr:¢|dVo|—0|ds|oT|true
¢s = S(x)=v]|S(x)=S5(x)]|S(x) e (nm)|S(x)e [n m]
¢1 = duration(T) € (n,m) | duration(T) € [n, m|
s := changes(x) | futures(q, changes(x)) | futures(t, changes(x))
M+ := calls(f) | futurer(q,calls(f)) | futurer(t,calls(f))
S = gq|source(T) |dest(T) | nexts(S, changes(x)) |
nexts(T, changes(x))
T = t]incident(S) | nextt(S,calls(f)) | nextr(T,calls(f))

Well-formed if well-sorted, in prenex form, and all variables bound
exactly once.

CE/RW MANCHESTER A
\ 1824 Slide 18
SZA

ity of

Syntax

¢ = VqeTs:0|VTtelr:¢|dVo|—0|ds|oT|true
¢s = S(x)=v]|S(x)=S5(x)]|S(x) e (nm)|S(x)e [n m]
¢1 = duration(T) € (n,m) | duration(T) € [n, m|
s := changes(x) | futures(q,changes(x)) | futures(t, changes(x))
M+ := calls(f) | futurer(q,calls(f)) | futurer(t,calls(f))
S = q|source(T) |dest(T) | nexts(S,changes(x)) |
nexts(T, changes(x))
T = t]incident(S) | nextt(S,calls(f)) | nextr(T,calls(f))

Well-formed if well-sorted, in prenex form, and all variables bound
exactly once.

Slide 18

|dea behind Semantics

Formulas define points of interest in the program, which are
related to symbolic states in the SCFG, which then relate to some
concrete states in a dynamic run.

We quantify over these to produce a set of bindings

The quantifier-free formula is then evaluated for each binding
where we use the points of interest to interpret temporal formulas

Slide 19

Points of Interest

A state g (or transition tr) in a dynamic run D satisfies point of
interest ' if D,q T (or D, tr =T)

D,(t,o,7) F changes(x) iff o(x) = changed
D,q F futures(s,changes(x)) iff

t(q) > t(s) and D, g - changes(x)
D, tr Foocalls(f) iff

for every path 7 € paths(tr) there is:
some (01,02) €T
such that o,(f) = called
D, tr F futurer(s,calls(f)) iff
t(tr) > t(s) and D, tr b calls(f)

Note D may not be most general e.g. transitions in D may relate
to sets of paths in SCFG

CE/RW MANCHESTER
\\ 1824
Z\

> ity of Manch

Slide 20

Points of Interest

A state g (or transition tr) in a dynamic run D satisfies point of
interest ' if D,q T (or D, tr =T)

D,(t,o,7) F changes(x) iff o(x) = changed
D

. q F futures(s,changes(x)) iff
t(q) > t(s) and D, g - changes(x)
D, tr F o calls(f) iff

for every path 7 € paths(tr) there is:
some (01,02) €T
such that op(f) = called
D, tr F futurer(s,calls(f)) iff
t(tr) > t(s) and D, tr b calls(f)

Note D may not be most general e.g. transitions in D may relate
to sets of paths in SCFG

Slide 21

Quantification Domains

The quantification domain of a quantified state or transition is
simply the states or transitions that satisfy the point of interest.

In V°q € I's the variable g ranges over the states c such that
cFTs. Similarly in VT € T'7.

We overload I's (and ' 1) to also stand for this set.

This could be computed by iterating over D and checking - T for
each state (or transition).

Slide 22

Semantics

LI L L L L L L [

Voq €Ts:¢iff forall c € T's we have D, B[q — c] = ¢
VTtr e T1: ¢ iff for all c € T+ we have D, B[tr — c] |= ¢
true

91V ¢ iff D, B = ¢1 0r D, B | 2

¢ iff not D, 5 = ¢

S(x) = viffeval(D, 3,S)(x) = v

Si1(x1) = S2(xe) iff eval(D, 3, S51)(x1) = eval(D, 3, S2)(x2)
S(x) € [n, m] iff eval(D, 8, S)(x) € [n, m]

S(x) € (n, m) iff eval(D, 8, S)(x) € (n, m)

duration(T) € (n, m) iff duration(eval(D, 5, T)) € (n, m)
duration(T) € [n, m] iff duration(eval(D, 3, T)) € [n, m]

Where we evaluate quantifier-free formulas on the dynamic run
with respect to a given binding.

Slide 23

Semantics

D,f = V°qeTs:¢iffforall c € T's we have D, B[qg +— c] = ¢
D,B = V'trelr:¢iffforall c € Tt we have D,B[tr— c] = ¢
D, E true

DB = é1V 6 iff DB é1or DB E ¢

D, E —¢iffnot D,BE ¢

D,5 E S(x)=viffeval(D,s,S)(x)=v

D,8 E Si(x1) = S2(x) iff eval(D, 3, 51)(x1) = eval(D, 8, S2)(x2)
D,5 E S(x) € [n,m]iff eval(D, 3, S)(x) € [n, m]

D,s E S(x) € (n,m)iff eval(D, 3,5)(x) € (n, m)

D,5 [duration(T) € (n, m) iff duration(eval(D, 5, T)) € (n, m)
D,B k= duration(T) € [n, m] iff duration(eval(D, 3, T)) € [n, m]

Where we evaluate quantifier-free formulas on the dynamic run
with respect to a given binding.

Evaluating Non-Temporal Formulas

Evaluating non-temporal formulas relatively straightforward given
some functions operating on states and transitions e.g.

source((q1, q2)) = q1.

eval(D, 3, q) = B(q)

eval(D, 3, tr) = B(tr)

eval(D, B,source(T)) = source(eval(D, 3, T))
eval(D, 3,dest(T)) = dest(eval(D, 5, T))
eval(D, 3, incident(S)) = incident(D,eval(D, S, 5))

CE/RW MANCHESTER
\\ 1824
Z\

> ity of

Slide 24

Evaluating Temporal Formulas

For temporal formulas it is necessary to identify the future point of
interest.

D767 _ .
eval (nexts(X, changes(x))) = q such that:

t(q) > t(eval(D, 3, X)) and D, g I changes(x) and there is no
g with t(eval(D, 5, X)) < t(q') < t(q) and D, ¢’ I changes(x)

D7 /87 S .
eval < next (X, calls(F))) = tr such that:

t(tr) > t(eval(D, 8, X)) and D, tr I calls(f) and there is no
tr’ with t(eval(D, 8, X)) < t(tr') < t(tr) and D, tr' - calls(f)

CE/RW MANCHESTER .
\ 1824 Slide 25
Z\

> ity of

Satisfaction /Violation

Finally, a dynamic run D satisfies a (well-formed, well-defined)
CFTL formula ¢ if D,[] = ¢, otherwise D violates ¢.

Slide 26

Our Example

— [J1 — [a — changed], — [/ > changed]s

. a =10
. for i in range(n):

afiiio [la «——— [f + called]>

f(a) l

[a — changed]s —— [f — called]s

o U WN

V°q € changes(a) :
q(a) € [0,20] = duration(nextr(q,calls(f))) € [0, 1]

Slide 27

Our Example

0, []17[]>

(

(0.1, [a — changed]>, [a — 10]) € changes(a)
(0.2, [i + changed]s, [a — 10,/ — 0])

(0.8, [f > called]2,[a+ 10,/ +— 0]) € calls(f)
(0.9, [i — changed]s, [a +— 10,/ — 1])

(2.1, [f > called]2,[a+ 10,/ — 1]) € calls(f)
<22? []47 [a = 10]>

(2.3,[a + changed]s, [a — 20]) € changes(a)
(3.4, [f > called]s, [a — 20]) € calls(f)

V°q € changes(a) :
g(a) € [0,20] = duration(nextt(q,calls(f))) € [0, 1]

CE/RW MANCHESTER A
\ 1824 Slide 28
Z\

> ity of M:

Our Example

0, []17[]>

(

(0.1, [a — changed]>, [a — 10]) € changes(a)
(0.2, [i + changed]s, [a — 10,/ — 0])

(0.8, [f > called]2,[a+ 10,/ +— 0]) € calls(f)
(0.9, [i — changed]s, [a +— 10,/ — 1])

(2.1, [f > called]2,[a+ 10,/ — 1]) € calls(f)
<22? []47 [a = 10]>

(2.3,[a + changed]s, [a — 20]) € changes(a)
(3.4, [f > called]s, [a — 20]) € calls(f)

V°q € changes(a) :
g(a) € [0,20] = duration(nextt(q,calls(f))) € [0, 1]

CE/RW MANCHESTER A
\ 1824 Slide 28
Z\

> ity of M:

Our Example

0, []17[]>

(

(0.1, [a — changed]>, [a — 10]) € changes(a)
(0.2,[i — changed]s, [a — 10,/ — 0])

(0.8, [f +> called]2,[a+ 10,/ +— 0]) € calls(f)
(0.9, [i — changed]s, [a +— 10,/ — 1])

(2.1, [f > called]2,[a+ 10,/ — 1]) € calls(f)
<22? []47 [a = 10]>

(2.3,[a + changed]s, [a — 20]) € changes(a)
(3.4, [f > called]s, [a — 20]) € calls(f)

V°q € changes(a) :
g(a) € [0,20] = duration(next7(q,calls(f))) € [0,1]

c(»aw MANCHESTER A
\ 1824 Slide 28
Z\

> ity of M:

Our Example

0, []17[]>

(

(0.1, [a — changed]>, [a — 10]) € changes(a)
(0.2, [i + changed]s, [a — 10,/ — 0])

(0.8, [f > called]2,[a+ 10,/ +— 0]) € calls(f)
(0.9, [i — changed]s, [a +— 10,/ — 1])

(2.1, [f > called]2,[a+ 10,/ — 1]) € calls(f)
<22? []47 [a = 10]>

(2.3, [a — changed]s, [a — 20]) € changes(a)
(3.4, [f > called]s, [a — 20]) € calls(f)

V°q € changes(a) :
g(a) € [0,20] = duration(nextt(q,calls(f))) € [0, 1]

CE/RW MANCHESTER A
\ 1824 Slide 28
Z\

> ity of M:

Our Example

0, []17[]>

(

(0.1, [a — changed]>, [a — 10]) € changes(a)
(0.2, [i + changed]s, [a — 10,/ — 0])

(0.8, [f > called]2,[a+ 10,/ +— 0]) € calls(f)
(0.9, [i — changed]s, [a +— 10,/ — 1])

(2.1, [f > called]2,[a+ 10,/ — 1]) € calls(f)
<22? []47 [a = 10]>

(2.3, [a — changed]s, [a — 20]) € changes(a)
(3.4,[f — called]g, [a — 20]) € calls(f)

V°q € changes(a) :
g(a) € [0,20] = duration(next7(q,calls(f))) € [0,1]

c(»aw MANCHESTER A
\ 1824 Slide 28
Z\

> ity of M:

A Naive Monitoring Algorithm

Maintain a map M from bindings to formula trees
For each concrete state g; in D

Update bindings:
1. If g; or (gi—1,q;) are in I'; then create a new binding

2. If there is a binding § that can be extended by g for a
quantification domain I'; then extend it

Update the formula trees for each binding using g (most will not
be updated)

IANCHESTER - .
1824 Slide 29

Formula Trees

Simply And-Or trees holding the quantifier-free formulas that can
be updated with concrete states to evaluate sub-formulas.

V°q € changes(a) :
q(a) € [0,20] = duration(nextr(q,calls(f))) € [0, 1]

(=(q(a) € [0,20])][next (g, calls(1))) € [0,1]]

CE/RW MANCHESTER e an
\ 1824 Slide 30
Z\

> ity of

Formula Trees

Simply And-Or trees holding the quantifier-free formulas that can
be updated with concrete states to evaluate sub-formulas.

V°q € changes(a) :
q(a) € [0,20] = duration(nextr(q,calls(f))) € [0, 1]

Slide 30

Formula Trees

Simply And-Or trees holding the quantifier-free formulas that can
be updated with concrete states to evaluate sub-formulas.

V°q € changes(a) :
q(a) € [0,20] = duration(nextr(gq,calls(f))) € [0, 1]

{nextr(q, calls(f))) € [0, 1]]

Slide 31

Formula Trees

Simply And-Or trees holding the quantifier-free formulas that can
be updated with concrete states to evaluate sub-formulas.

V°q € changes(a) :
q(a) € [0,20] = duration(nextr(gq,calls(f))) € [0, 1]

Slide 31

Formula Trees

Simply And-Or trees holding the quantifier-free formulas that can
be updated with concrete states to evaluate sub-formulas.

V°q € changes(a) :
q(a) € [0,20] = duration(nextr(gq,calls(f))) € [0, 1]

True

Slide 32

Instrumentation Problem

Need to pick points in the program to add instruments to produce
the dynamic run

Could pick all points but this will be inefficient
Use the specification to decide where to instrument

Two phases
1. ldentify the symbolic support of a quantification domain as
the set of symbolic states that could produce a binding

2. Use the quantifier-free formula to find all necessary symbolic
states forward reachable from the symbolic support

Slide 33

Minimal Instrumentation

Importantly, if we just consider these instrumentation points then
we preserve verdicts.

Theorem

For SCFG(P), if D satisfies ¢ then the dynamic run produced by
removing all states from D (by collapsing transitions) not identified
as instrumentation points also satisfies ¢.

Instrumentation is minimal with respect to reachability - but not
necessarily with respect to other things e.g. dataflow

Slide 36

Optimisations

Generation Points

Now that we statically know when bindings can be created we can
do a path-analysis to find all points where bindings are necessarily
going to be extended and remove this iteration from the naive
monitoring algorithm.

In other words, all binding-generation points can be identified
completely statically.

Instrumentation for Indexing

We can also statically determine which bindings will be updated
where, allowing us to store this information and use it to directly
index the relevant formula trees. More information in TACAS tool

paper.

Slide 37

The VYPR tool

Takes a Python program and a property specification file (written
with our own specification-building library) and

1. Builds the SCFG
2. ldentifies and adds relevant instrumentation points

3. Runs monitoring asynchronously

4. Qutputs a verdict report once the program terminates

Experiments with VYPR

Monitor two properties on a sample (representative) program

V°q € changes(a) :
g(a) € [0,80] = duration(nextt(q,calls(f))) € [0,1]

V°q € changes(a) : VYTt € future(q, calls(f)) :
q(a) € [0,80] = duration(t) € [0, 1]

Questions
1. How much overhead does VYPR introduce?

2. How much does this depend on time between observations?

CE/RW MANCHESTER A
\ 1824 Slide 39
Z\

> ity of

Results

— T © 5
S osf 1 =
3 S 4t
X 0.6f 4
3 83
© 0.41 1 B2
b5 9]
£ <1}]
o 0.2F 4 g
>
o) S ol = . = . . = | N
0.0 S S S S 3 & S
O D DD DN >) Q' >
QY Q7 AQ” 007 07 7 Q7 Q7 ,Q9” O © " {V N\
9 00 A ¥ o \,Q ,\"\/ ,\"1« ,\"’) ,\/V 4\ ,-Lb(th b9
Bindings generated at runtime Bindings generated at runtime
Average % overhead vs delay (ms)
80
g
% 60
®
»
8
5 40
£
2
o
20
0

12345678 910111213141516171819202122 2324252627 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
Delay (ms)

Summary

New runtime verification framework for real-time temporal
properties of Python functions

VYPR has now been extended to web services.

» The extension, along with its first major application to
infrastructure at the CMS Experiment at CERN, is currently
being presented at TACAS.

Future work

» Transformations on SCFG (and program) to reduce
instrumentation

» Symbolic execution to reduce instrumentation

» Violation explanation

Slide 41

