
Joshua Heneage Dawes University of Manchester, Manchester, UK

CERN, Geneva, Switzerland

joshua.dawes@cern.ch

Giles Reger University of Manchester, Manchester, UK

Explaining Violations of Properties in
Control-Flow Temporal Logic

�1

Runtime Verification 2019, Porto, Portugal

mailto:joshua.dawes@cern.ch

!2

• Explanation in RV

• Overview of Control-Flow Temporal Logic

• An Extension of the Semantics

• Severity of Violations

• Path Reconstruction and Comparison

• Explanation with VyPR and applications at CERN

Outline

Difficulties in Explanation Research

• Given a failure wrt a specification, explanation is a natural
next step.

• Definition of “explanation” depends on the domain and
the specific program being monitored.

• In some cases, program variable recording could suffice.

• In other cases, comparison of deviations in control-flow
might be better.

!3

General problem

• Runtime Verification ideally is an automatic process (at
least with VyPR, our framework at CERN), once
specifications exist.

• Therefore, explanation should be too.

• That is to say: any explanation mechanism must be able
to give a developer useful feedback about what could be
causing failure, preferably without intermediate input.

!4

A Low-level Specification Language

• The explanation approach to be presented is independent
of specification language.

• Here we use Control-Flow Temporal Logic (CFTL), as
used in the environment we work with at CERN.

• So a quick introduction.

!5

if n > 1:
 for i in range(n):
 r = f(i)
 print(r)
else:
 print("nope")

[]

['conditional']

['control-flow']
conditional

path length = None

['loop']

['loop']
<_ast.Call object at 0x104f90050>

path length = None

['print']

print stmt
[not(<_ast.Compare object at 0x104f8cd50>)]

path length = 1

['r', 'f']

['r', 'f']
[<_ast.Compare object at 0x104f8cd50>, 'for']

path length = 1

['post-loop']

['loop-skip']
not(<_ast.Call object at 0x104f90050>)

path length = None

['post-conditional']

['control-flow']
post-condition

path length = None
['print']

print stmt
[<_ast.Compare object at 0x104f8cd50>, 'for']

path length = 2

['control-flow']
post-condition

path length = None

['loop-jump']
loop-jump

path length = None

[None]
post-loop

path length = None

variables/functions in P

A static model of programs:
Symbolic Control-Flow Graphs (SCFGs)

!6

State 1 State 2 State 3 State 4

Transition

t1 t2 t3 t4

duration = t2 - t1

Transition

duration = t3 - t2

Transition

duration = t4 - t3

time

function calls, assignments,
etc

• We think of program runs as dynamic runs:

• Concrete States (instantaneous checkpoints with an associated timestamp) -

• Transitions (computation performed to reach one state from another) - pairs of states -

Dynamic Runs

!7

Dynamic Runs identify with paths through SCFGs.

Each concrete state in a Dynamic Run contains a
symbolic state.

SCFGs to Dynamic Runs

!8

• CFTL formulas reason about states and transitions from
dynamic runs.

• “For each concrete state we get from the symbolic state
sigma, if the category is A and the database is oracle,
then the length of the list of results returned from the
query is less than 10.”

CFTL Example

8q 2 fromState(�) :

(q(category) = A ^ q(db) = oracle) =)
length(result(next(q, calls(query)))(rows)) < 10

!9

Points of Failure in Dynamic Runs

• Standard CFTL semantics is defined over total dynamic
runs and has truth domain

• Failure requires a notion of permanent change of verdict.

• In other words, impartiality.

• …a point of failure can’t exist if it’s possible for a
property to be satisfied in the future!

B = {true, false}

!10

A truth domain for partial dynamic
runs

'

notSure

State 1 State 2

t1 t2

duration = t2 - t1 duration = t3 - t2

…

unobserved future

!11

t3

A truth domain for partial dynamic
runs

'

trueSoFar

State 1 State 2

t1 t2

duration = t2 - t1 duration = t3 - t2

State 3

unobserved future

!12

t3

A truth domain for partial dynamic
runs

'

false

(same as total semantics)

State 1 State 2

t1 t2

duration = t2 - t1 duration = t3 - t2

State 3

unobserved future

!13

A truth domain for partial dynamic
runs

false < notSure < trueSoFar

t ⌘ _ u ⌘ ^

false _ notSure ⌘ notSure

false ^ notSure ⌘ false

!14

A 3-valued CFTL semantics

• The semantics presented at SAC 2019 used an eval function.

• Our first step is to modify this for partial dynamic runs to return null if an observation is
not found.

• If a part of a formula is given null by eval and we cannot reach a verdict otherwise, we
conclude notSure. Otherwise we can conclude false or trueSoFar.

eval(D, ✓, X)

evalp(Dp, ✓, X)

Dynamic Run Binding from Quantification

State or Transition expression

Partial Dynamic Run
Possibly partial binding

!15

Falsifying Observations

• The falsifying observation for a failing dynamic run is the first observation
for which the verdict was false, before which the verdict was not false.

t3

State 3 is a falsifying observation

State 1 State 2

t1 t2

duration = t2 - t1 duration = t3 - t2

State 3

impossible to satisfy after this

!16

Quantitative Semantics

• Given the notion of a falsifying observation, it’s natural to ask by how much it
was falsifying.

• Key facts:

• There is (part of) an atom for which an observation that is falsifying exists.

• Based on the atom, we can define a metric over failure (we give only one
case here):

8q 2 changes(limit) :

duration(next(q, calls(query))) < q(limit)

With ↵ = (duration(t) 2 I),

Sev(↵, c) = inf{|duration(c)� n| : n 2 I} · X (↵, c)

for X (↵, c) = 1 if duration(c) 2 I,�1

!17

Complementary Explanation
Approaches

• When monitoring for CFTL specifications, we have
immediate access to program state (variable values) and
control flow.

• Thanks to CFTL’s low level of abstraction.

• Hence an explanation approach can consist of
comparing program state and control flow across
multiple runs.

!18

Comparing Program Paths

SCFG Context-free
grammar

⇡

T (⇡)

A path as a sequence of
edges through the SCFG

A parse tree representing
derivation of the path via the

context-free grammar

Branch-aware
Dynamic Run

Dynamic runs are made
branch-aware by additional

instrumentation at branching
points.

Instrumenting only certain
program points to check a

specification means we often
cannot decide a path based

just on these points.

!19

SCFG to CFG transformation
• Doing this for an arbitrary SCFG is a matter of defining the CFG for each

component and deriving the composite CFG bottom-up.

• We define the components in such a way that the CFG is unambiguous.

Symbols corresponding to
symbolic states are non-

terminal.

Paths through SCFGs are
sequences of edges, so

terminal symbols are edges.

!20

Parse Trees

• With unambiguous CFGs, parse tree derivation is trivial
with a 1-step lookahead.

Paths leading to observations
are not complete, so the right-
hand-sides of their parse trees
have leaves with non-terminal

symbols.
T (⇡)

!21

⇡1, . . . ,⇡n

T (⇡1), . . . , T (⇡n)

T (⇡1) \ · · · \ T (⇡n)

We define intersection to give
insight into branching and
loop iteration differences

SCFG to CFG to Parse Tree

Parse Tree Intersection

!22

Parse Tree Intersection

• Our paper gives a recursive definition.

• In general, the intersection of two parse trees is the parse tree containing all
subtrees that are common up to the path with which one can reach them.

This part of the
path is a loop.

Intersection
shows that

iterations vary.

!23

Comparison

• By combining this path comparison approach with
information about verdicts, we can determine whether
certain program paths are problematic.

• Current research is looking at automating the discovery of
problematic control flow as much as possible.

!24

Explanation with VyPR

• VyPR - a framework under active
development at the CMS Experiment at
CERN for automated performance analysis of
Python programs using RV.

• http://cern.ch/vypr and http://github.com/
pyvypr

• Path and state comparison accessible to
developers via an analysis library.

GPLv3

!25

http://cern.ch/vypr
http://github.com/pyvypr
http://github.com/pyvypr

Path Comparison with VyPR’s
Analysis Library

import VyPRAnalysis as analysis
import VyPRAnalysis.orm.operations as ops

analysis.set_config_file("VyPRAnalysis/config.json")

functions = analysis.list_functions()
f = functions[0]

verdicts = f.get_verdicts()
observations = [
 verdicts[0].get_observations()[0],
 verdicts[1].get_observations()[0]
]
obs_collection = ops.ObservationCollection(
 observations
)

path_collection = obs_collection.to_paths()
path_collection.show_critical_points_in_file(
 filename=“critical_points"
)

!26

Get a list of observations that were
required to reach each verdict

Fix a function and a property over that function

Connect to a verdict server

Determine the points in control-flow
at which paths leading to those

observations diverged.

Output

@app.route('/paths_branching_test/<int:n>/', methods=["GET", "POST"])
def paths_branching_test(n):

 a = 20; c = 10;
* if n > 10:
 l = []
 for i in range(n):

 print("test1")
 l.append(i**2)

 x = 15
 if x > 10:

 print("test 2")
 else:

 l = []
 f(l)

!27

critical points in
control flow are

currently indicated
with a star.

To conclude…

• We have introduced some of the first work in the direction of
explanation in RV.

• Applying our approach in the context of CFTL gives a way to
explain performance drops and low-level behaviour.

• The techniques here have been applied to CMS infrastructure and
have revealed insight into 1) behaviour of the code and even 2)
behaviour of users.

• Development is very much active at the CMS Experiment at CERN.

!28

