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• I’m a Doctoral Student based at CERN, with
Manchester as home institute.

• In this seminar, I will describe what is, to the
best of our knowledge, the first application of
Runtime Verification in High Energy Physics and
to web services.
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Context
• The work in this seminar is described across 3

papers:
• Specification of State and Time Constraints for

Runtime Verification of Functions
https://arxiv.org/abs/1806.02621

• Specification of Temporal Properties of Functions for
Runtime Verification to appear in SAC 2019

• VYPR2: A Framework for Runtime Verification of
Python Web Services to appear in TACAS 2019

• More information about the result of this
research can be found at
http://cern.ch/vypr.
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Runtime Verification: A Classical View

We wish to check, at runtime, whether some
program P holds a property ϕ written in some
temporal logic, for example Linear-time Temporal
Logic or Metric Temporal Logic.

• A monitor is synthesised for ϕ.

• Such a monitor is often an automaton Aϕ.

• Runs of P are abstracted into traces τ , holding
enough information to check ϕ.
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Practicalities
• Typically, work on Runtime Verification focuses

on a setting where a trace τ has already been
derived from a run of a program P .

• Further, specifications are often high-level.

• What does the LTL formula G(p → X (q))
actually mean when applied to a program? We
need an instrumentation mapping.

p ↔ x < 10
q ↔ call function
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RV for Performance Analysis

• Performance Analysis performed at CERN
normally consists of profiling a system and
looking at plots.

• The purpose of deriving plots is normally to
check them for some property in one’s head
expressed in natural language.
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RV for Performance Analysis

• What if we could encode performance
requirements as formulas in a logic and apply
RV?

• Then we could consistently synthesise checking
mechanisms for performance requirements.

• Maybe then explanation could be automated to
some degree...

• While doing all of this, we need a specification
language that’s accessible to engineers.
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Control-Flow Temporal Logic (CFTL)

• Low-level logic - easy for software engineers to
use.

• No instrumentation mapping - formulas have
meaning on their own.

• Semantics defined over individual function runs.

• Formulas in CFTL talk about states
(instantaneous checkpoints) and transitions (the
computation required to move between states).
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Form of CFTL Formulas

• CFTL formulas take prenex normal form

ϕ ≡ ∀q1 ∈ Γ1, . . . ,∀qn ∈ Γn : φ(q1, . . . , qn)

• qi are variables bound to states or transitions.
Γi are quantification domains.

• φ is a boolean combination of predicates over
the qi and neighbouring states/transitions.
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Examples

∀q ∈ changes(x) :

q(x) = True =⇒ duration(next(q, calls(f ))) < 1

∀q ∈ changes(y) :

∀t ∈ future(q, calls(f )) :

q(y) = val =⇒ duration(t) ∈ (0, 0.3)
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We need to develop

• A trace - an abstraction of a run of the program
P that we wish to monitor; and

• A semantics - a definition of truth of CFTL
formulas with respect to our notion of traces.

For this, we start by developing a static program
model.
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Symbolic Control-Flow Graphs
(SCFGs)

• For a program P , SCFG(P) = 〈V ,E , vs〉.
• V is a set of symbolic states. Symbolic states

are maps from program variables/functions to
{undefined, changed, unchanged, called}.

• E ⊂ V × V is a set of edges between symbolic
states.

• vs ∈ V is the starting state.
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if n > 10:

for i in range(n):

r = f(i)

print(r)

else:

print("nope")

[]

['conditional']

['control-flow']
conditional

path length = None

['loop']

['loop']
<_ast.Call object at 0x104f90050>

path length = None

['print']

print stmt
[not(<_ast.Compare object at 0x104f8cd50>)]

path length = 1

['r', 'f']

['r', 'f']
[<_ast.Compare object at 0x104f8cd50>, 'for']

path length = 1

['post-loop']

['loop-skip']
not(<_ast.Call object at 0x104f90050>)

path length = None

['post-conditional']

['control-flow']
post-condition

path length = None
['print']

print stmt
[<_ast.Compare object at 0x104f8cd50>, 'for']

path length = 2

['control-flow']
post-condition

path length = None

['loop-jump']
loop-jump

path length = None

[None]
post-loop

path length = None
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Dynamic Runs as Traces

• Dynamic Run D - finite sequence of concrete
states

〈t1, σ1, τ1〉, . . . , 〈tn, σn, τn〉
• For timestamps ti with ti+1 > ti , symbolic

states σi and concrete states τi giving concrete
values to each x ∈ dom(σi).

• Transitions are pairs ∆τi = 〈τi , τi+1〉.
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Properties

• For a concrete state 〈t, σ, τ〉,
time(〈t, σ, τ〉) = t.

• For a transition ∆τ = 〈〈t, σ, τ〉, 〈t ′, σ′, τ ′〉〉,
time(∆τ) = t.

• The duration of ∆τ is duration(∆τ) = t ′ − t.
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Predicates

• We write predicates over states and transitions
from dynamic runs.

• Let 〈t, σ, τ〉 be a state from a dynamic run D.

• Then we write
〈t, σ, τ〉 ` changes(x) ⇐⇒ σ(x) = changed.

• Or, for ∆τ = 〈〈ti , σi , τi〉, 〈ti+1, σi+1, τi+1〉〉,
∆τ ` calls(f ) ⇐⇒ σi+1(f ) = called.
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Quantification Domains

• Recall the form of CFTL formulas

ϕ ≡ ∀q1 ∈ Γ1, . . . ,∀qn ∈ Γn : φ(q1, . . . , qn)

• A quantification domain Γi is a set of states and
transitions, each satisfying the same predicate.

• Hence, q ∈ Γ1 is abuse of notation for
q ` calls(f ).
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Atoms

• For a CFTL formula ϕ, let Aϕ be the set of
atoms. For example:

ϕ ≡ ∀q ∈ changes(x) :
duration(next(q, calls(g))) ∈ (0, 0.3)

Aϕ = {duration(q, calls(g)) ∈ (0, 0.3)}
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Semantics

D, tr ` calls(f ) iff
for every path π ∈ paths(tr) there is:
some 〈σ1, σ2〉 ∈ π
such that σ2(f ) = called

D, q ` futureS(s, changes(x)) iff
time(q) > time(s) and D, q ` changes(x)
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Semantics

eval(D, θ, q) = θ(q)
eval(D, θ, tr) = θ(tr)
eval(D, θ, source(T )) = source(eval(D, θ,T ))
eval(D, θ, dest(T )) = dest(eval(D, θ,T ))
eval(D, θ, incident(S)) = incident(D, eval(D, θ, S))

eval
( D, θ,

nextS(X , changes(x))

)
= q such that:

time(q) > time(eval(D, θ,X )) and
D, q ` changes(x) and there is no

q′ with time(eval(D, θ,X )) < time(q′) < time(q) and
D, q′ ` changes(x)
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Semantics

D, θ |= ∀Sq ∈ ΓS : φ iff
for all c ∈ ΓS we have D, θ[q 7→ c] |= φ

D, θ |= ∀T tr ∈ ΓT : φ iff
for all c ∈ ΓT we have D, θ[tr 7→ c] |= φ

D, θ |= true
D, θ |= φ1 ∨ φ2 iff D, θ |= φ1 or D, θ |= φ2

D, θ |= ¬φ iff not D, θ |= φ
D, θ |= S(x) = v iff eval(D, θ, S)(x) = v
D, θ |= S(x) ∈ [n,m] iff eval(D, θ, S)(x) ∈ [n,m]
D, θ |= S(x) ∈ (n,m) iff eval(D, θ, S)(x) ∈ (n,m)
D, θ |= duration(T ) ∈ (n,m) iff

duration(eval(D, θ,T )) ∈ (n,m)
D, θ |= duration(T ) ∈ [n,m] iff

duration(eval(D, θ,T )) ∈ [n,m]
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Singly-Quantified Formulas

“Every call to the function f should take less than 5
units of time”

∀t ∈ calls(f ) :︸ ︷︷ ︸
all calls of f

duration(t) < 5.
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With a Dynamic Run

∀t ∈ calls(f ) : duration(t) < 5.

D = 〈1, [x 7→ undefined, f 7→ undefined], []〉,
〈2, [x 7→ changed, f 7→ undefined], []〉,
〈8, [x 7→ unchanged, f 7→ called], []〉

FAILURE - the transition
t = 〈1, [x 7→ changed, f 7→ undefined], []〉, 〈1, [x 7→
unchanged, f 7→ called], []〉 ` calls(f ) but
duration(t) = 8− 2.
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Multiple Quantification

• Using the predicates we have so far, changes(x)
and calls(f ), singly-quantified formulas are
straightforward.

• We use an extra predicate on states or
transitions q - future(q, Γ) where Γ is calls or
changes.
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∀q ∈ changes(x) :

∀t ∈ future(q, calls(f )) :

q(x) = True =⇒ duration(t) < 1

“Everytime x changes (bound to q), if it’s set to
True, then every future call to f (bound to t)
should take less than 1 unit of time.”
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Multiple Quantification

• Instead of considering nested quantification, we
consider quantification over a product space.

∀q̄ ∈ Γ1 × · · · × Γn : φ(q̄)

• where q̄ = [q1 7→ v1, . . . , qn 7→ vn] is a concrete
binding for variables qi and states or transitions
vi .

• Each q̄ corresponds to an and-or formula tree
which collapses.
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Monitoring

• The filter problem - Typical RV approaches
imagine the program as a black-box that
generates a trace that is not derived from the
property being checked.

• The lookup problem - Given some data that is
relevant, how do we decide the bindings/atoms
to which it contributes?
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The Lookup Problem

• This solution requires that we properly write
down an instrumentation algorithm for CFTL.

• To save time, I will only cover the
singly-quantified case.

Slide 28



Atom-driven Instrumentation

• General idea: find instructions in the program
that could generate concrete bindings.

• We do this by recursing over the SCFG to
identify vertices or edges which could be a part
of the symbolic supports of elements of the
quantification domain.

• The resulting set is the Binding Space, and
denoted by Bϕ.
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Binding Spaces

• A Binding Space Bϕ derived from SCFG(P) wrt
ϕ is a set of maps β.

• For each β ∈ Bϕ, β sends variables from ϕ to
candidates for symbolic supports of
states/transitions generated at runtime.

• For example, ∀q ∈ changes(x) : q(x) < 10
yields a set of maps from q to vertices v with
v(x) = changed.
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Example

ϕ ≡ ∀t ∈ calls(f ) : duration(t) < 1

1 for n in range (5):

2 f(i)

Bϕ = {[t 7→ f(i)]}

The symbolic support map
s(t) on transitions t `
calls(f ) cannot be injec-
tive.
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Symbolic Support wrt Bindings

• For a concrete binding
q̄ = [q1 7→ v1, . . . , qn 7→ vn], the β ∈ Bϕ that
acts as symbolic support for q̄ is the map
[q1 7→ s(v1), . . . , qn 7→ s(vn)].

• We write s(q̄) = β.
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Atom-driven Instrumentation -
singly-quantified

For some CFTL formula ϕ ≡ ∀q ∈ Γ : φ(q) and
some SCFG(P) = 〈V ,E , vs〉:

1. Compute Bϕ recursively using Γ.

2. For each β ∈ Bϕ with index iB:
2.1 For each α ∈ A(ϕ) with index iα:

2.1.1 Use α to find neighbouring points around β(q) in
SCFG (P).

Slide 33



Lookup

• Given 〈iB, iα〉 pairs, for ϕ ≡ ∀q ∈ Γ : ψ(q):

• We group formula trees by iB values.

• Hence, lookup of the monitors (formula trees)
to update for each observation is immediate
given iB.

• Lookup of the part of the formula tree is also
straightforward given iα.
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Filtering
• We accidentally solved the filter problem via

atom-driven instrumentation!
• Atom-driven instrumentation determines the

points in the program that may generate
observations that we can use to check ϕ.

• We will never miss an observation, but there are
ways in which we can get too much data.

• Current research looks at what we can do to
move instrumentation as close to optimality as
possible.
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VyPR

• This theory was used to build the VyPR tool.

• The initial version ran only on Python programs
with respect to single CFTL properties.

• It introduced the PyCFTL library for building
CFTL specifications in Python.
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PyCFTL

∀q ∈ changes(val) :

duration(next(q, calls(func))) ∈ [0, 3]

Forall(q = changes(’val ’)).\

Check(lambda q : (

q.next_call(’func ’). duration ()._in([0, 3])

))
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VyPR2 pipeline

1. Engineers describe the performance of their web
service in a PyCFTL specification file.

2. Web service is pulled to a production machine.

3. VyPR2 instruments functions according to the
PyCFTL specification file.

4. The web service is monitored at runtime.

5. Verdict information is collected on VyPR2’s
separate server.
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Context - LHC and CMS
• The LHC (Large Hadron Collider) is a circular

proton-proton collider at CERN in Geneva,
Switzerland.

• On the LHC lies the Compact Muon Solenoid
(CMS) detector.

• I’m going to describe experience applying
VyPR2 on the CMS Experiment.

• It was performed in close collaboration with the
Alignment, Calibrations and Databases
(AlCaDB) group of the CMS Experiment.
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Conditions Upload

• Before physics analyses can be performed on
data taken during LHC runs, reconstruction
must take place.

• This process requires Event and Non-event data.

• The Non-event data are so-called Conditions.

• There is a Python-based web service responsible
for uploading this to a database after
computation.
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Simulating LHC Runs

• We cannot safely inject untested verification
code into critical infrastructure.

• Instead, with the help of CMS’ Alignment and
Calibrations group, we recorded Conditions
uploads during 6 months.

• The result was a dataset of ≈ 14, 600
Conditions uploads.

• We replayed this dataset in an experimental
setup almost identical to the production one.
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Results
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∀q ∈ changes(hashes) :

duration(next(q, calls(notFound))) < 0.3
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Runtime Verification in High Energy
Physics

• VyPR is publicly available -
http://cern.ch/vypr.

• While preparing for the High-Luminosity LHC is
still a driving force:

• We have a seminar scheduled in CERN IT,
which will give a chance to find new uses for
VyPR across CERN.

• Finally, RV research at CERN addresses the
notorious problem of lack of test cases.
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