Towards Automated Performance Analysis of Python Programs

University of Manchester Formal Methods Seminar

Joshua Heneage Dawes^{1,2,3} Giles Reger¹ Giovanni Franzoni² Andreas Pfeiffer²

¹University of Manchester, Manchester, UK

²CERN. Geneva. Switzerland

³joshua.dawes@cern.ch, http://cern.ch/jdawes

- I'm a Doctoral Student based at CERN, with Manchester as home institute.
- In this seminar, I will describe what is, to the best of our knowledge, the first application of Runtime Verification in High Energy Physics and to web services.

Context

- The work in this seminar is described across 3 papers:
 - Specification of State and Time Constraints for Runtime Verification of Functions https://arxiv.org/abs/1806.02621
 - Specification of Temporal Properties of Functions for Runtime Verification to appear in SAC 2019
 - VYPR2: A Framework for Runtime Verification of Python Web Services to appear in TACAS 2019
- More information about the result of this research can be found at http://cern.ch/vypr.

Runtime Verification: A Classical View

We wish to check, at runtime, whether some program P holds a property φ written in some temporal logic, for example Linear-time Temporal Logic or Metric Temporal Logic.

- A monitor is synthesised for φ .
- Such a monitor is often an automaton \mathcal{A}_{φ} .
- Runs of P are abstracted into traces τ , holding enough information to check φ .

Practicalities

- Typically, work on Runtime Verification focuses on a setting where a trace τ has already been derived from a run of a program P.
- Further, specifications are often high-level.
- What does the LTL formula $\mathcal{G}(p \to \mathcal{X}(q))$ actually mean when applied to a program? We need an *instrumentation mapping*.

$$p \leftrightarrow x < 10$$
 $q \leftrightarrow call function$

RV for Performance Analysis

- Performance Analysis performed at CERN normally consists of profiling a system and looking at plots.
- The purpose of deriving plots is normally to check them for some property in one's head expressed in natural language.

RV for Performance Analysis

- What if we could encode performance requirements as formulas in a logic and apply RV?
- Then we could consistently synthesise checking mechanisms for performance requirements.
- Maybe then explanation could be automated to some degree...
- While doing all of this, we need a specification language that's accessible to engineers.

Control-Flow Temporal Logic (CFTL)

- Low-level logic easy for software engineers to use.
- No instrumentation mapping formulas have meaning on their own.
- Semantics defined over individual function runs.
- Formulas in CFTL talk about states
 (instantaneous checkpoints) and transitions (the
 computation required to move between states).

Form of CFTL Formulas

CFTL formulas take prenex normal form

$$\varphi \equiv \forall q_1 \in \Gamma_1, \ldots, \forall q_n \in \Gamma_n : \phi(q_1, \ldots, q_n)$$

- q_i are variables bound to states or transitions.
 Γ_i are quantification domains.
- ϕ is a boolean combination of predicates over the q_i and neighbouring states/transitions.

Examples

```
orall q \in \mathsf{changes}(x): q(x) = \mathsf{True} \implies \mathsf{duration}(\mathsf{next}(q, \mathsf{calls}(f))) < 1 \forall q \in \mathsf{changes}(y): \forall t \in \mathsf{future}(q, \mathsf{calls}(f)): q(y) = \mathsf{val} \implies \mathsf{duration}(t) \in (0, 0.3)
```

We need to develop

- A trace an abstraction of a run of the program
 P that we wish to monitor; and
- A semantics a definition of truth of CFTL formulas with respect to our notion of traces.

For this, we start by developing a static program model.

Symbolic Control-Flow Graphs (SCFGs)

- For a program P, $SCFG(P) = \langle V, E, v_s \rangle$.
- V is a set of symbolic states. Symbolic states are maps from program variables/functions to {undefined, changed, unchanged, called}.
- $E \subset V \times V$ is a set of edges between symbolic states.
- $v_s \in V$ is the starting state.

Dynamic Runs as Traces

• Dynamic Run \mathcal{D} - finite sequence of concrete states

$$\langle t_1, \sigma_1, \tau_1 \rangle, \ldots, \langle t_n, \sigma_n, \tau_n \rangle$$

- For timestamps t_i with $t_{i+1} > t_i$, symbolic states σ_i and concrete states τ_i giving concrete values to each $x \in \text{dom}(\sigma_i)$.
- Transitions are pairs $\Delta \tau_i = \langle \tau_i, \tau_{i+1} \rangle$.

Properties

- For a concrete state $\langle t, \sigma, \tau \rangle$, time $(\langle t, \sigma, \tau \rangle) = t$.
- For a transition $\Delta \tau = \langle \langle t, \sigma, \tau \rangle, \langle t', \sigma', \tau' \rangle \rangle$, time $(\Delta \tau) = t$.
- The duration of $\Delta \tau$ is duration $(\Delta \tau) = t' t$.

Predicates

- We write predicates over states and transitions from dynamic runs.
- Let $\langle t, \sigma, \tau \rangle$ be a state from a dynamic run \mathcal{D} .
- Then we write $\langle t, \sigma, \tau \rangle \vdash \text{changes}(x) \iff \sigma(x) = \text{changed}.$
- Or, for $\Delta \tau = \langle \langle t_i, \sigma_i, \tau_i \rangle, \langle t_{i+1}, \sigma_{i+1}, \tau_{i+1} \rangle \rangle$, $\Delta \tau \vdash \mathsf{calls}(f) \iff \sigma_{i+1}(f) = \mathsf{called}$.

Quantification Domains

Recall the form of CFTL formulas

$$\varphi \equiv \forall q_1 \in \Gamma_1, \ldots, \forall q_n \in \Gamma_n : \phi(q_1, \ldots, q_n)$$

- A quantification domain Γ_i is a set of states and transitions, each satisfying the same predicate.
- Hence, q ∈ Γ₁ is abuse of notation for q ⊢ calls(f).

Atoms

• For a CFTL formula φ , let A_{φ} be the set of atoms. For example:

$$arphi \equiv orall q \in \mathsf{changes}(x) :$$
 $\mathsf{duration}(\mathsf{next}(q, \mathsf{calls}(g))) \in (0, 0.3)$
 $A_{arphi} = \{\mathsf{duration}(q, \mathsf{calls}(g)) \in (0, 0.3)\}$

Semantics

```
 \mathcal{D}, tr \vdash \mathsf{calls}(f) \quad \mathsf{iff} \\ \quad \mathsf{for} \; \mathsf{every} \; \mathsf{path} \; \pi \in \mathsf{paths}(tr) \; \mathsf{there} \; \mathsf{is:} \\ \quad \mathsf{some} \; \langle \sigma_1, \sigma_2 \rangle \in \pi \\ \quad \mathsf{such} \; \mathsf{that} \; \sigma_2(f) = \mathsf{called}   \mathcal{D}, q \vdash \mathsf{future}_S(s, \mathsf{changes}(x)) \quad \mathsf{iff} \\ \quad \mathsf{time}(q) > \mathsf{time}(s) \; \mathsf{and} \; \mathcal{D}, q \vdash \mathsf{changes}(x)
```

Semantics

```
\begin{array}{lll} \operatorname{eval}(\mathcal{D},\theta,q) & = & \theta(q) \\ \operatorname{eval}(\mathcal{D},\theta,tr) & = & \theta(tr) \\ \operatorname{eval}(\mathcal{D},\theta,\operatorname{source}(T)) & = & \operatorname{source}(\operatorname{eval}(\mathcal{D},\theta,T)) \\ \operatorname{eval}(\mathcal{D},\theta,\operatorname{dest}(T)) & = & \operatorname{dest}(\operatorname{eval}(\mathcal{D},\theta,T)) \\ \operatorname{eval}(\mathcal{D},\theta,\operatorname{incident}(S)) & = & \operatorname{incident}(\mathcal{D},\operatorname{eval}(\mathcal{D},\theta,S)) \\ \operatorname{eval}\left(\begin{array}{c} \mathcal{D},\theta, \\ \operatorname{next}_S(X,\operatorname{changes}(x)) \end{array}\right) & = & q \operatorname{such that:} \end{array}
```

```
\begin{array}{c} \mathsf{time}(q) > \mathsf{time}(\mathsf{eval}(\mathcal{D}, \theta, X)) \text{ and } \\ \mathcal{D}, q \vdash \mathsf{changes}(x) \text{ and there is no} \\ q' \text{ with } \mathsf{time}(\mathsf{eval}(\mathcal{D}, \theta, X)) < \mathsf{time}(q') < \mathsf{time}(q) \text{ and } \\ \mathcal{D}, q' \vdash \mathsf{changes}(x) \end{array}
```

Semantics

```
\mathcal{D}, \theta \models \forall^{S} q \in \Gamma_{S} : \phi \text{ iff}
                                               for all c \in \Gamma_S we have \mathcal{D}, \theta[q \mapsto c] \models \phi
  \mathcal{D}, \theta \models \forall^T tr \in \Gamma_T : \phi \text{ iff}
                                                for all c \in \Gamma_T we have \mathcal{D}, \theta[tr \mapsto c] \models \phi
\begin{array}{c|cccc} \mathcal{D}, \theta & \models & \textit{true} \\ \mathcal{D}, \theta & \models & \phi_1 \lor \phi_2 \text{ iff } \mathcal{D}, \theta \models \phi_1 \text{ or } \mathcal{D}, \theta \models \phi_2 \\ \mathcal{D}, \theta & \models & \neg \phi \text{ iff not } \mathcal{D}, \theta \models \phi \\ \hline \mathcal{C}(x) - y \text{ iff eval}(\mathcal{D}, \theta, S)(x) = y \end{array}
   \begin{array}{c|cccc} \mathcal{D}, \theta & = & S(x) = v \text{ iff } \operatorname{eval}(\mathcal{D}, \theta, S)(x) = v \\ \mathcal{D}, \theta & = & S(x) \in [n, m] \text{ iff } \operatorname{eval}(\mathcal{D}, \theta, S)(x) \in [n, m] \\ \mathcal{D}, \theta & = & S(x) \in (n, m) \text{ iff } \operatorname{eval}(\mathcal{D}, \theta, S)(x) \in (n, m) \\ \end{array} 
   \mathcal{D}, \theta \models
                                  duration(T) \in (n, m) iff
                                                duration(eval(\mathcal{D}, \theta, T)) \in (n, m)
  \mathcal{D}, \theta \models \operatorname{duration}(T) \in [n, m] \text{ iff}
                                                duration (eval(\mathcal{D}, \theta, T)) \in [n, m]
```

Singly-Quantified Formulas

"Every call to the function f should take less than 5 units of time"

$$\forall t \in \mathsf{calls}(f)$$
: $\mathsf{duration}(t) < 5$.

With a Dynamic Run

```
\forall t \in \mathsf{calls}(f) : \mathsf{duration}(t) < 5.
       \mathcal{D} = \langle 1, [x \mapsto \text{undefined}, f \mapsto \text{undefined}], [] \rangle,
                  \langle 2, [x \mapsto \mathsf{changed}, f \mapsto \mathsf{undefined}], [] \rangle
                  \langle 8, [x \mapsto \text{unchanged}, f \mapsto \text{called}], [] \rangle
FAILURE - the transition
t = \langle 1, [x \mapsto \mathsf{changed}, f \mapsto \mathsf{undefined}], [] \rangle, \langle 1, [x \mapsto \mathsf{undefined}], [] \rangle
unchanged, f \mapsto \text{called}, [] \vdash \text{calls}(f) but
duration(t) = 8 - 2.
```

Multiple Quantification

- Using the predicates we have so far, changes(x) and calls(f), singly-quantified formulas are straightforward.
- We use an extra predicate on states or transitions q - future(q, Γ) where Γ is calls or changes.

```
orall q \in \mathsf{changes}(x):
orall t \in \mathsf{future}(q, \mathsf{calls}(f)):
q(x) = \mathsf{True} \implies \mathsf{duration}(t) < 1
```

"Everytime x changes (bound to q), if it's set to True, then every future call to f (bound to t) should take less than 1 unit of time."

Multiple Quantification

 Instead of considering nested quantification, we consider quantification over a product space.

$$\forall \bar{q} \in \Gamma_1 \times \cdots \times \Gamma_n : \phi(\bar{q})$$

- where $\bar{q} = [q_1 \mapsto v_1, \dots, q_n \mapsto v_n]$ is a concrete binding for variables q_i and states or transitions v_i .
- Each \bar{q} corresponds to an *and-or* formula tree which collapses.

Monitoring

- The filter problem Typical RV approaches imagine the program as a black-box that generates a trace that is not derived from the property being checked.
- The lookup problem Given some data that is relevant, how do we decide the bindings/atoms to which it contributes?

The Lookup Problem

- This solution requires that we properly write down an instrumentation algorithm for CFTL.
- To save time, I will only cover the singly-quantified case.

Atom-driven Instrumentation

- General idea: find instructions in the program that could generate concrete bindings.
- We do this by recursing over the SCFG to identify vertices or edges which could be a part of the symbolic supports of elements of the quantification domain.
- The resulting set is the *Binding Space*, and denoted by \mathcal{B}_{φ} .

Binding Spaces

- A Binding Space \mathcal{B}_{φ} derived from SCFG(P) wrt φ is a set of maps β .
- For each $\beta \in \mathcal{B}_{\varphi}$, β sends variables from φ to candidates for symbolic supports of states/transitions generated at runtime.
- For example, $\forall q \in \text{changes}(x) : q(x) < 10$ yields a set of maps from q to vertices v with v(x) = changed.

Example

$$\varphi \equiv \forall t \in \mathsf{calls}(f) : \mathsf{duration}(t) < 1$$

$$\mathcal{B}_{arphi} = \{ [t \mapsto \mathtt{f(i)}] \}$$

The symbolic support map s(t) on transitions $t \vdash \text{calls}(f)$ cannot be injective.

Symbolic Support wrt Bindings

- For a concrete binding $ar{q} = [q_1 \mapsto v_1, \dots, q_n \mapsto v_n]$, the $\beta \in \mathcal{B}_{\varphi}$ that acts as symbolic support for $ar{q}$ is the map $[q_1 \mapsto s(v_1), \dots, q_n \mapsto s(v_n)]$.
- We write $s(\bar{q}) = \beta$.

Atom-driven Instrumentation - singly-quantified

For some CFTL formula $\varphi \equiv \forall q \in \Gamma : \phi(q)$ and some SCFG(P) = $\langle V, E, v_s \rangle$:

- 1. Compute \mathcal{B}_{φ} recursively using Γ .
- 2. For each $\beta \in \mathcal{B}_{\varphi}$ with index $i_{\mathcal{B}}$:
 - 2.1 For each $\alpha \in A(\varphi)$ with index i_{α} :
 - Use α to find neighbouring points around $\beta(q)$ in SCFG(P).

Lookup

- Given $\langle i_{\mathcal{B}}, i_{\alpha} \rangle$ pairs, for $\varphi \equiv \forall q \in \Gamma : \psi(q)$:
- We group formula trees by $i_{\mathcal{B}}$ values.
- Hence, lookup of the monitors (formula trees) to update for each observation is immediate given $i_{\mathcal{B}}$.
- Lookup of the part of the formula tree is also straightforward given i_{α} .

Filtering

- We accidentally solved the filter problem via atom-driven instrumentation!
- Atom-driven instrumentation determines the points in the program that may generate observations that we can use to check φ .
- We will never miss an observation, but there are ways in which we can get too much data.
- Current research looks at what we can do to move instrumentation as close to optimality as possible.

VyPR

- ullet This theory was used to build the VyPR tool.
- The initial version ran only on Python programs with respect to single CFTL properties.
- It introduced the PyCFTL library for building CFTL specifications in Python.

PyCFTL

```
\forall q \in \mathsf{changes}(\mathsf{val}):
\mathsf{duration}(\mathsf{next}(q, \mathsf{calls}(\mathsf{func}))) \in [0, 3]
```

```
Forall(q = changes('val')).\
Check(lambda q : (
   q.next_call('func').duration()._in([0, 3])
))
```

VYPR2 pipeline

- 1. Engineers describe the performance of their web service in a PyCFTL specification file.
- 2. Web service is pulled to a production machine.
- $_{\mbox{\scriptsize 3.}}$ VyPR2 instruments functions according to the PyCFTL specification file.
- 4. The web service is monitored at runtime.
- $_{5.}$ Verdict information is collected on VyPR2's separate server.

Context - LHC and CMS

- The LHC (Large Hadron Collider) is a circular proton-proton collider at CERN in Geneva, Switzerland.
- On the LHC lies the Compact Muon Solenoid (CMS) detector.
- I'm going to describe experience applying VyPR2 on the CMS Experiment.
- It was performed in close collaboration with the Alignment, Calibrations and Databases (AlCaDB) group of the CMS Experiment.

Conditions Upload

- Before physics analyses can be performed on data taken during LHC runs, reconstruction must take place.
- This process requires Event and Non-event data.
- The Non-event data are so-called Conditions.
- There is a Python-based web service responsible for uploading this to a database after computation.

Simulating LHC Runs

- We cannot safely inject untested verification code into critical infrastructure.
- Instead, with the help of CMS' Alignment and Calibrations group, we recorded Conditions uploads during 6 months.
- The result was a dataset of $\approx 14,600$ Conditions uploads.
- We replayed this dataset in an experimental setup almost identical to the production one.

Results

Unpredictable database latency.

Latency from an optimisation.

$$\forall q \in \mathsf{changes}(\mathsf{hashes}):$$
 $\mathsf{duration}(\mathsf{next}(q, \mathsf{calls}(\mathsf{notFound}))) < 0.3$

Runtime Verification in High Energy Physics

- VYPR is publicly available http://cern.ch/vypr.
- While preparing for the High-Luminosity LHC is still a driving force:
- We have a seminar scheduled in CERN IT, which will give a chance to find new uses for VYPR across CERN.
- Finally, RV research at CERN addresses the notorious problem of lack of test cases.

