
Towards Automated Performance
Analysis of Python Programs
University of Manchester Formal Methods Seminar

Joshua Heneage Dawes1,2,3 Giles Reger1 Giovanni Franzoni2 Andreas Pfeiffer2

1University of Manchester, Manchester, UK

2CERN, Geneva, Switzerland

3joshua.dawes@cern.ch, http://cern.ch/jdawes

Slide 1

joshua.dawes@cern.ch
http://cern.ch/jdawes

• I’m a Doctoral Student based at CERN, with
Manchester as home institute.

• In this seminar, I will describe what is, to the
best of our knowledge, the first application of
Runtime Verification in High Energy Physics and
to web services.

Slide 2

Context
• The work in this seminar is described across 3

papers:
• Specification of State and Time Constraints for

Runtime Verification of Functions
https://arxiv.org/abs/1806.02621

• Specification of Temporal Properties of Functions for
Runtime Verification to appear in SAC 2019

• VYPR2: A Framework for Runtime Verification of
Python Web Services to appear in TACAS 2019

• More information about the result of this
research can be found at
http://cern.ch/vypr.

Slide 3

https://arxiv.org/abs/1806.02621
http://cern.ch/vypr.

Runtime Verification: A Classical View

We wish to check, at runtime, whether some
program P holds a property ϕ written in some
temporal logic, for example Linear-time Temporal
Logic or Metric Temporal Logic.

• A monitor is synthesised for ϕ.

• Such a monitor is often an automaton Aϕ.

• Runs of P are abstracted into traces τ , holding
enough information to check ϕ.

Slide 4

Practicalities
• Typically, work on Runtime Verification focuses

on a setting where a trace τ has already been
derived from a run of a program P .

• Further, specifications are often high-level.

• What does the LTL formula G(p → X (q))
actually mean when applied to a program? We
need an instrumentation mapping.

p ↔ x < 10
q ↔ call function

Slide 5

RV for Performance Analysis

• Performance Analysis performed at CERN
normally consists of profiling a system and
looking at plots.

• The purpose of deriving plots is normally to
check them for some property in one’s head
expressed in natural language.

Slide 6

RV for Performance Analysis

• What if we could encode performance
requirements as formulas in a logic and apply
RV?

• Then we could consistently synthesise checking
mechanisms for performance requirements.

• Maybe then explanation could be automated to
some degree...

• While doing all of this, we need a specification
language that’s accessible to engineers.

Slide 7

Control-Flow Temporal Logic (CFTL)

• Low-level logic - easy for software engineers to
use.

• No instrumentation mapping - formulas have
meaning on their own.

• Semantics defined over individual function runs.

• Formulas in CFTL talk about states
(instantaneous checkpoints) and transitions (the
computation required to move between states).

Slide 8

Form of CFTL Formulas

• CFTL formulas take prenex normal form

ϕ ≡ ∀q1 ∈ Γ1, . . . ,∀qn ∈ Γn : φ(q1, . . . , qn)

• qi are variables bound to states or transitions.
Γi are quantification domains.

• φ is a boolean combination of predicates over
the qi and neighbouring states/transitions.

Slide 9

Examples

∀q ∈ changes(x) :

q(x) = True =⇒ duration(next(q, calls(f))) < 1

∀q ∈ changes(y) :

∀t ∈ future(q, calls(f)) :

q(y) = val =⇒ duration(t) ∈ (0, 0.3)

Slide 10

We need to develop

• A trace - an abstraction of a run of the program
P that we wish to monitor; and

• A semantics - a definition of truth of CFTL
formulas with respect to our notion of traces.

For this, we start by developing a static program
model.

Slide 11

Symbolic Control-Flow Graphs
(SCFGs)

• For a program P , SCFG(P) = 〈V ,E , vs〉.
• V is a set of symbolic states. Symbolic states

are maps from program variables/functions to
{undefined, changed, unchanged, called}.

• E ⊂ V × V is a set of edges between symbolic
states.

• vs ∈ V is the starting state.

Slide 12

if n > 10:

for i in range(n):

r = f(i)

print(r)

else:

print("nope")

[]

['conditional']

['control-flow']
conditional

path length = None

['loop']

['loop']
<_ast.Call object at 0x104f90050>

path length = None

['print']

print stmt
[not(<_ast.Compare object at 0x104f8cd50>)]

path length = 1

['r', 'f']

['r', 'f']
[<_ast.Compare object at 0x104f8cd50>, 'for']

path length = 1

['post-loop']

['loop-skip']
not(<_ast.Call object at 0x104f90050>)

path length = None

['post-conditional']

['control-flow']
post-condition

path length = None
['print']

print stmt
[<_ast.Compare object at 0x104f8cd50>, 'for']

path length = 2

['control-flow']
post-condition

path length = None

['loop-jump']
loop-jump

path length = None

[None]
post-loop

path length = None

Slide 13

Dynamic Runs as Traces

• Dynamic Run D - finite sequence of concrete
states

〈t1, σ1, τ1〉, . . . , 〈tn, σn, τn〉
• For timestamps ti with ti+1 > ti , symbolic

states σi and concrete states τi giving concrete
values to each x ∈ dom(σi).

• Transitions are pairs ∆τi = 〈τi , τi+1〉.

Slide 14

Properties

• For a concrete state 〈t, σ, τ〉,
time(〈t, σ, τ〉) = t.

• For a transition ∆τ = 〈〈t, σ, τ〉, 〈t ′, σ′, τ ′〉〉,
time(∆τ) = t.

• The duration of ∆τ is duration(∆τ) = t ′ − t.

Slide 15

Predicates

• We write predicates over states and transitions
from dynamic runs.

• Let 〈t, σ, τ〉 be a state from a dynamic run D.

• Then we write
〈t, σ, τ〉 ` changes(x) ⇐⇒ σ(x) = changed.

• Or, for ∆τ = 〈〈ti , σi , τi〉, 〈ti+1, σi+1, τi+1〉〉,
∆τ ` calls(f) ⇐⇒ σi+1(f) = called.

Slide 16

Quantification Domains

• Recall the form of CFTL formulas

ϕ ≡ ∀q1 ∈ Γ1, . . . ,∀qn ∈ Γn : φ(q1, . . . , qn)

• A quantification domain Γi is a set of states and
transitions, each satisfying the same predicate.

• Hence, q ∈ Γ1 is abuse of notation for
q ` calls(f).

Slide 17

Atoms

• For a CFTL formula ϕ, let Aϕ be the set of
atoms. For example:

ϕ ≡ ∀q ∈ changes(x) :
duration(next(q, calls(g))) ∈ (0, 0.3)

Aϕ = {duration(q, calls(g)) ∈ (0, 0.3)}

Slide 18

Semantics

D, tr ` calls(f) iff
for every path π ∈ paths(tr) there is:
some 〈σ1, σ2〉 ∈ π
such that σ2(f) = called

D, q ` futureS(s, changes(x)) iff
time(q) > time(s) and D, q ` changes(x)

Slide 19

Semantics

eval(D, θ, q) = θ(q)
eval(D, θ, tr) = θ(tr)
eval(D, θ, source(T)) = source(eval(D, θ,T))
eval(D, θ, dest(T)) = dest(eval(D, θ,T))
eval(D, θ, incident(S)) = incident(D, eval(D, θ, S))

eval
(D, θ,

nextS(X , changes(x))

)
= q such that:

time(q) > time(eval(D, θ,X)) and
D, q ` changes(x) and there is no

q′ with time(eval(D, θ,X)) < time(q′) < time(q) and
D, q′ ` changes(x)

Slide 20

Semantics

D, θ |= ∀Sq ∈ ΓS : φ iff
for all c ∈ ΓS we have D, θ[q 7→ c] |= φ

D, θ |= ∀T tr ∈ ΓT : φ iff
for all c ∈ ΓT we have D, θ[tr 7→ c] |= φ

D, θ |= true
D, θ |= φ1 ∨ φ2 iff D, θ |= φ1 or D, θ |= φ2

D, θ |= ¬φ iff not D, θ |= φ
D, θ |= S(x) = v iff eval(D, θ, S)(x) = v
D, θ |= S(x) ∈ [n,m] iff eval(D, θ, S)(x) ∈ [n,m]
D, θ |= S(x) ∈ (n,m) iff eval(D, θ, S)(x) ∈ (n,m)
D, θ |= duration(T) ∈ (n,m) iff

duration(eval(D, θ,T)) ∈ (n,m)
D, θ |= duration(T) ∈ [n,m] iff

duration(eval(D, θ,T)) ∈ [n,m]

Slide 21

Singly-Quantified Formulas

“Every call to the function f should take less than 5
units of time”

∀t ∈ calls(f) :︸ ︷︷ ︸
all calls of f

duration(t) < 5.

Slide 22

With a Dynamic Run

∀t ∈ calls(f) : duration(t) < 5.

D = 〈1, [x 7→ undefined, f 7→ undefined], []〉,
〈2, [x 7→ changed, f 7→ undefined], []〉,
〈8, [x 7→ unchanged, f 7→ called], []〉

FAILURE - the transition
t = 〈1, [x 7→ changed, f 7→ undefined], []〉, 〈1, [x 7→
unchanged, f 7→ called], []〉 ` calls(f) but
duration(t) = 8− 2.

Slide 23

Multiple Quantification

• Using the predicates we have so far, changes(x)
and calls(f), singly-quantified formulas are
straightforward.

• We use an extra predicate on states or
transitions q - future(q, Γ) where Γ is calls or
changes.

Slide 24

∀q ∈ changes(x) :

∀t ∈ future(q, calls(f)) :

q(x) = True =⇒ duration(t) < 1

“Everytime x changes (bound to q), if it’s set to
True, then every future call to f (bound to t)
should take less than 1 unit of time.”

Slide 25

Multiple Quantification

• Instead of considering nested quantification, we
consider quantification over a product space.

∀q̄ ∈ Γ1 × · · · × Γn : φ(q̄)

• where q̄ = [q1 7→ v1, . . . , qn 7→ vn] is a concrete
binding for variables qi and states or transitions
vi .

• Each q̄ corresponds to an and-or formula tree
which collapses.

Slide 26

Monitoring

• The filter problem - Typical RV approaches
imagine the program as a black-box that
generates a trace that is not derived from the
property being checked.

• The lookup problem - Given some data that is
relevant, how do we decide the bindings/atoms
to which it contributes?

Slide 27

The Lookup Problem

• This solution requires that we properly write
down an instrumentation algorithm for CFTL.

• To save time, I will only cover the
singly-quantified case.

Slide 28

Atom-driven Instrumentation

• General idea: find instructions in the program
that could generate concrete bindings.

• We do this by recursing over the SCFG to
identify vertices or edges which could be a part
of the symbolic supports of elements of the
quantification domain.

• The resulting set is the Binding Space, and
denoted by Bϕ.

Slide 29

Binding Spaces

• A Binding Space Bϕ derived from SCFG(P) wrt
ϕ is a set of maps β.

• For each β ∈ Bϕ, β sends variables from ϕ to
candidates for symbolic supports of
states/transitions generated at runtime.

• For example, ∀q ∈ changes(x) : q(x) < 10
yields a set of maps from q to vertices v with
v(x) = changed.

Slide 30

Example

ϕ ≡ ∀t ∈ calls(f) : duration(t) < 1

1 for n in range (5):

2 f(i)

Bϕ = {[t 7→ f(i)]}

The symbolic support map
s(t) on transitions t `
calls(f) cannot be injec-
tive.

Slide 31

Symbolic Support wrt Bindings

• For a concrete binding
q̄ = [q1 7→ v1, . . . , qn 7→ vn], the β ∈ Bϕ that
acts as symbolic support for q̄ is the map
[q1 7→ s(v1), . . . , qn 7→ s(vn)].

• We write s(q̄) = β.

Slide 32

Atom-driven Instrumentation -
singly-quantified

For some CFTL formula ϕ ≡ ∀q ∈ Γ : φ(q) and
some SCFG(P) = 〈V ,E , vs〉:

1. Compute Bϕ recursively using Γ.

2. For each β ∈ Bϕ with index iB:
2.1 For each α ∈ A(ϕ) with index iα:

2.1.1 Use α to find neighbouring points around β(q) in
SCFG (P).

Slide 33

Lookup

• Given 〈iB, iα〉 pairs, for ϕ ≡ ∀q ∈ Γ : ψ(q):

• We group formula trees by iB values.

• Hence, lookup of the monitors (formula trees)
to update for each observation is immediate
given iB.

• Lookup of the part of the formula tree is also
straightforward given iα.

Slide 34

Filtering
• We accidentally solved the filter problem via

atom-driven instrumentation!
• Atom-driven instrumentation determines the

points in the program that may generate
observations that we can use to check ϕ.

• We will never miss an observation, but there are
ways in which we can get too much data.

• Current research looks at what we can do to
move instrumentation as close to optimality as
possible.

Slide 35

VyPR

• This theory was used to build the VyPR tool.

• The initial version ran only on Python programs
with respect to single CFTL properties.

• It introduced the PyCFTL library for building
CFTL specifications in Python.

Slide 36

PyCFTL

∀q ∈ changes(val) :

duration(next(q, calls(func))) ∈ [0, 3]

Forall(q = changes(’val ’)).\

Check(lambda q : (

q.next_call(’func ’). duration ()._in([0, 3])

))

Slide 37

VyPR2 pipeline

1. Engineers describe the performance of their web
service in a PyCFTL specification file.

2. Web service is pulled to a production machine.

3. VyPR2 instruments functions according to the
PyCFTL specification file.

4. The web service is monitored at runtime.

5. Verdict information is collected on VyPR2’s
separate server.

Slide 38

Context - LHC and CMS
• The LHC (Large Hadron Collider) is a circular

proton-proton collider at CERN in Geneva,
Switzerland.

• On the LHC lies the Compact Muon Solenoid
(CMS) detector.

• I’m going to describe experience applying
VyPR2 on the CMS Experiment.

• It was performed in close collaboration with the
Alignment, Calibrations and Databases
(AlCaDB) group of the CMS Experiment.

Slide 39

Conditions Upload

• Before physics analyses can be performed on
data taken during LHC runs, reconstruction
must take place.

• This process requires Event and Non-event data.

• The Non-event data are so-called Conditions.

• There is a Python-based web service responsible
for uploading this to a database after
computation.

Slide 40

Simulating LHC Runs

• We cannot safely inject untested verification
code into critical infrastructure.

• Instead, with the help of CMS’ Alignment and
Calibrations group, we recorded Conditions
uploads during 6 months.

• The result was a dataset of ≈ 14, 600
Conditions uploads.

• We replayed this dataset in an experimental
setup almost identical to the production one.

Slide 41

Results

900-0-8s-delay 900-2-0s-delay 900-4-0s-delay 900-6-0s-delay
Upload run

0

10

20

30

40

50

60

V
io

la
ti

o
n
s

w
rt

 ϕ

Number of violations (for each binding) generated vs upload run

app.routes.store_blobs
6f183...

app.routes.check_hashes
1b312...

app.routes.upload_metadata
6f6a7...

Unpredictable database latency.

99 100 101 102 103
Function/Property pair ID

0

1000

2000

3000

4000

5000

6000

V
io

la
ti

o
n
s

g
e
n
e
ra

te
d

Violations generated across 14610 uploads

Latency from an optimisation.

∀q ∈ changes(hashes) :

duration(next(q, calls(notFound))) < 0.3

Slide 42

Runtime Verification in High Energy
Physics

• VyPR is publicly available -
http://cern.ch/vypr.

• While preparing for the High-Luminosity LHC is
still a driving force:

• We have a seminar scheduled in CERN IT,
which will give a chance to find new uses for
VyPR across CERN.

• Finally, RV research at CERN addresses the
notorious problem of lack of test cases.

Slide 43

http://cern.ch/vypr

	Context of this Seminar
	A Classical View of Runtime Verification
	RV for Performance Analysis
	Application Experience at CERN
	Going Forward

